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Abstract 

Under the trend of green development, the traditional fossil fuel and centralized energy management models are 
no longer applicable, and distributed energy systems that can efficiently utilize clean energy have become the key 
to research in the energy field nowadays. However, there are still many problems in distributed energy trading 
systems, such as user privacy protection and mutual trust in trading, how to ensure the high quality and reliability 
of energy services, and how to motivate energy suppliers to participate in trading. To solve these problems, this paper 
proposes a blockchain-based smart grid system that enables efficient energy trading and consensus optimization, 
enabling electricity consumers to obtain high-quality, reliable energy services and electricity suppliers to receive 
rich rewards, and motivating all parties to actively participate in trading to maintain the balance of the system. 
We propose a reputation value assessment algorithm to evaluate the reputation of electricity suppliers to ensure 
that electricity consumers receive quality energy services. To minimize the cost, maximize the benefit for the electric-
ity suppliers and optimize the system, we present an algorithm based on reinforcement learning DDPG to determine 
the power supplier, power generation capacity, and consensus mechanism between nodes to obtain power trad-
ing rights in each round. Simulation results show that the proposed energy trading scheme has good performance 
in terms of rewards.
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Introduction
Traditional energy industries, such as power compa-
nies, were once powered by fully integrated power 
companies investing in and building transmission and 
distribution networks [1, 2]. However, due to increasing 

electrification and energy demand, as well as poor trans-
mission and distribution networks, traditional fossil fuels 
and centralized utilities are increasingly unable to meet 
the demand of consumers and suppliers [3]. In addition, 
under the general trend of clean energy replacing fossil 
energy and renewable energy replacing non-renewable 
energy [4, 5], electricity energy trading should develop 
towards green development [6–9]. In order to build a 
new electric energy transaction network, which can not 
only use clean energy efficiently, but also maintain the 
balance of the energy market by providing a better Qual-
ity of Experience (QoE) and maximizing the benefits of 
suppliers, the distributed energy resources (DERs) has 
become the focus of current energy research [10, 11]. 
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DER system [12] enables the connection between users 
to form a distributed network, which is a new energy 
production-supply-consumption system. It is the prod-
uct of the development of mature new energy technology 
and energy storage technology [13–16], and the power 
balance is transferred from the demand side. At present, 
the energy of large scale DER systems is mainly elec-
tric energy [17]. However, the implementation of a DER 
transaction system is still under study, and the issues of 
user privacy protection and transaction trust that may 
be encountered in decentralization need to be addressed. 
How to provide better QoE and reliable energy services 
in a transaction, while offering substantial rewards and 
incentives to suppliers, are among the issues that need to 
be addressed.

In recent years, blockchain has attracted attention 
from all walks of life due to its decentralized and tamper 
proof characteristics. Its essence is a distributed data-
base, which is jointly maintained by all nodes. Blockchain 
is also used to satisfy the trusted construction of the 
metaverse [18]. It is the theoretical basis for the imple-
mentation of DER transaction systems in [19–21]. With 
the help of blockchain technology, energy producers and 
consumers can be directly connected, thus simplifying 
the mutual relations and interactions between the par-
ties. In [22], the authors compare the electric transaction 
market based on block chain and existing the difference 
between electric power market. They point out that the 
blockchain has broken the boundaries and constraints 
of the design logic of the contemporary energy market, 
and are expected to change the traditional centralized 
energy system through the blockchain. In [23], the author 
designed a DRE energy transaction authentication mech-
anism based on blockchain technology applied to distrib-
uted energy trading, but this mechanism cannot work in 
practical production due to its poor throughput.In [24], 
the author proposes a trading model for energy transac-
tion market to local electric vehicle transactions. Simula-
tion results and evaluation conclude that the blockchain 
platform improves the autonomy of grid participants but 
does not involve the overall benefits and rewards of the 
system network. In [25], the author proposed a hetero-
geneous computing and resources allocation framework 
for wireless powered federated edge learning to investi-
gate the performance of the system from users’ perspec-
tive. They minimize energy consumption and achieve 
energy harvesting by optimizing the problem. Compared 
to other methods, this system can achieve efficient fed-
erated learning. The overall performance of the power 
energy trading network is considered and optimized to 
maximize transmission and minimize consumption, pro-
viding a reference for system design. In [26], the authors 
focus on the cost of individual participants, rather than 

merely optimizing the cost of the entire process as in 
existing works. They improved the convergence speed of 
federated learning by adjusting the local CPU cycle fre-
quency and other related parameters. It can be seen from 
the experimental results that they have well balanced the 
cost and fairness. In [27], the author analyzed the trans-
parency of blockchain. Smart contracts make the opera-
tional rules of the entire system open and transparent, 
achieve information symmetry and market effective-
ness, and ensure the security and reliability of the trading 
system. In this paper, we propose a trusted transaction 
method for blockchain-based manufacturing services.

In [28], the authors propose a blockchain-based 
approach to manufacturing service composition. The key 
contributions are the study of dynamic QoS evaluation 
methods and consensus algorithms, and the design of 
resource rent-seeking and matching mechanisms based 
on smart contracts. That approach can adaptively com-
plete the composition of manufacturing services while 
balancing the privacy, security and openness of transac-
tion information, which greatly enhances the trustwor-
thiness of the cloud manufacturing service platform and 
the processing speed of the system. In [29], this paper 
has proposed a novel P2P energy trading system for two 
separate optimization problems, one is an individual 
optimal charging algorithm designed for those consum-
ers to obtain the best daily charging schedule, the other 
is a P2P energy trading mechanism to reduce the total 
daily energy cost. But they ignore the coupling between 
the two optimization problems. In [30], this paper build 
a trust mechanism based on blockchain technology, view 
the creation of digital assets as a process of evaluating 
behavior, design smart contracts to handle the evalu-
ation behavior, and build a blockchain system based on 
the reputation values of alliance members. The system 
uses sidechain technology to transfer the created digital 
assets, which can increase the authenticity guarantee of 
the blockchain in other trading scenarios. Experimen-
tal results show that the system is characterized by low 
cost and memory space that is not easily expanded. How-
ever, this article does not evaluate the performance of the 
system.

Although some works have studied the system of elec-
tricity transaction, there exist new challenges to address. 
On the one hand, How to achieve better QoE and reliable 
services to meet the needs of consumers. On the other 
hand, how to guarantee the power supplier’s reward and 
revenue maximization. More importantly, how to meet 
the above two requirements as far as possible, under the 
premise of the best service quality as far as possible to 
reduce the cost and expand the revenue, we will use the 
trusted reputation management system and the problem 
of revenue maximization two aspects to study.
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We believe that reinforcement learning would be a 
good choice when the system needs to make decisions 
to achieve a balance between risk and reward in complex 
situations [31–33]. The selective federated reinforcement 
learning (SFRL) proposed in [34] can improve the accu-
racy of the automatic driving model very well. In this 
paper, we propose a blockchain-based smart grid system 
that can ensure efficient energy transactions by consid-
ering the situation of each node comprehensively, and 
can dynamically select the consensus mechanism of the 
blockchain to achieve consensus optimization. The effi-
cient implementation of the system enables electricity 
consumers to obtain high quality and reliable energy ser-
vices, while electricity suppliers are richly rewarded, thus 
motivating them to participate in the transactions again. 
For the real-time dynamics of the system, we design a 
MADDPG-based reinforcement learning algorithm to 
decide the electricity supplier that gets the power trad-
ing rights in each round, the generating power, and the 
consensus mechanism among the nodes. Multi-agent 
deep deterministic policy gradient (MADDPG) is a pow-
erful reinforcement learning algorithm. In recent years, 
the leading contenders are deep Q-learning [35], “vanilla” 
policy gradient methods [36], and trust region natural 
policy gradient methods [37, 38]. However, Q-learning 
is not ideal in dealing with high-dimensional problems, 
because it is easy to be constrained by dimensional dis-
asters and is poorly understood, vanilla policy gradient 
methods have poor data effiency and robustness.

The contributions of this paper are summarized as fol-
lows: (i) in order to solve the problems of mutual trust 
under the electricity transaction and realize the trans-
parency of the system, we propose a reputation evalua-
tion system based on blockchain technology, so that the 
power consumers can obtain reliable and better QoE 
services; (ii) in order to make the lowest cost of power 
suppliers and the biggest gains, we try to optimize trans-
mitted power and charging power. We also choose the 
consensus algorithm and the state of the charge and dis-
charge method to enable the power supplier to earn a 
larger profit and actively participate in the power supply 
and trading incentives. (iii) using reinforcement learning 
MADDPG effectiveness to solve the convergence of the 
experimental results.

The remainder of this paper is organized as follows. 
The related works are described in Section “Introduc-
tion”. Section “System description and problem formula-
tion” depicts the system model and problem formulation. 
Section  “Multi-Agent Deep Deterministic Policy Gradi-
ent (MADDPG) algorithms” presents the solution to the 
optimization problem. Section  “Experiment result” pre-
sents the simulation results. The conclusion and future 
research issues are given in Section “Conclusion”.

System description and problem formulation
System scenario
There is an electric power system with a set of electric 
consumers (ECs) M = {1, 2, 3, · · · ,M} and some elec-
tric suppliers (ESs) N = {1, 2, 3, · · · ,N } . ESs can gener-
ate electricity through new energy sources such as wind 
energy, solar energy, and tidal energy, and can also gen-
erate electricity through conventional energy sources 
such as hydropower, oil, and nuclear energy. ECs can be 
different power-consuming users such as factories, resi-
dential life, and charging piles. At the beginning, ECs 
send the power order requests to ESs, ESs monitor the 
transaction requests, and N ESs compete for the trans-
action right of the orders at the same time. The system 
scenario is shown in Fig. 1. Assuming that the electronic 
request is an electronic order transaction, the electronic 
request is packaged into blocks and consensus is carried 
out in the blockchain. If the ES n is the first to obtain the 
power to produce blocks, it will obtain the right to trade 
electricity energy. The optimized strategy of transactions 
between EC and ES can be executed through smart con-
tracts, thereby ensuring its correct, reliable and transpar-
ent execution.

Trust and reputation modeling
The paper [39] proposes a reputation management 
scheme based on multi-arm slot machine (MAB), which 
can effectively select vehicles with good reputation. In our 
system, there are two situations when two ESs interact. 
Communication trust generally refer to the transmission 
of data, including both cooperative and non-cooperative 
situations. The case of data trust generally refers to the 
data aggregation, including correct transmission and 
incorrect transmission. In Bayesian analysis, the beta dis-
tribution is usually used to represent the conjugate prior 
distribution of the binomial distribution parameters, 
where the beta distribution is simple and flexible, and can 
be used to simulate the trust distribution.

Beta function can be described by gamma function as 
follows,

where a represents the number of normal cooperation 
and b represents the number of data transmission error. 
For the prediction of ES’s behavior, the probability dis-
tribution P of ES’s reputation can be obtained by using 
beta distribution. When calculating trust and reputation 
values, we consider both communication trust and data 
trust. According to the beta distribution, the reputation 
of ES m to ES n in time slot t is expressed as [40]

(1)
P(x) =

Ŵ(a+ b)

Ŵ(a)+ Ŵ(b)
x
a−1(1− x)b−1

, ∀ 0 ≤ x ≤ 1, a ≥ 0, b ≥ 0,
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Therefore, we can obtain the final reputation value of ES 
n in time slot t,

In our reputation scheme, we classify all ESs in the system 
into three categories, which are trusted nodes, uncertain 
nodes and untrustworthy nodes. For both trusted and 
uncertain nodes we will give the opportunity to partici-
pate in the transaction, while untrustworthy nodes need 
to stay in the network for observation. We will give all 
nodes an initial reputation value Tin = 0.5 , which means 
that all nodes are initially uncertain nodes. The study of 
[41] points out that malicious nodes are a minority in 
P2P systems and suspicion of additional nodes is one of 
the important reasons for the degradation of the overall 
system performance. The formula given by [42]

(2)T (t)
n,m = Beta(a+ 1, b+ 1).

(3)Tn(t) =

M

m=1,m�=n

Tn,m(t).

(4)TRn(t) = Tin +
Tn(t)

M
,

is used to distinguish the type of Es n. When Tn(t)
M < 0.5 , 

the reputation value is untrustworthy.If Tn(t)
M = 0.5 , the 

reputation value is uncertain; if Tn(t)
M > 0.5 , the reputa-

tion value is trustworthy. Trustworthy nodes can partici-
pate in the next round of transactions, while untrusted 
nodes need to stay in the network for observation. The 
more times a node is untrusted, the longer it will wait.

Since the deployment environment of each ES can-
not be determined, some problems will inevitably 
arise when ESs are distributed in a harsh environment. 
Therefore, it makes more sense to provide a second 
chance for untrusted nodes. Untrusted nodes should 
stay in the network for observation rather than be 
immediately excluded from the transaction. When a 
node is considered untrusted, we mark it as untrusted 
and start the clock T(t). During this period, untrusted 
nodes are not allowed to participate in power trans-
actions. After this period, untrusted nodes will be 
restored to their initial credibility. T(t) is not fixed. 
The more times nodes are untrusted, the longer nodes 
stay in the network for observation until nodes are 
blacklisted.

Fig. 1 The system scenario



Page 5 of 12Wang et al. Journal of Cloud Computing          (2023) 12:121  

Blockchain system in energy trading
By deploying blockchain in the energy trading market, 
consensus algorithms and smart contracts can be used to 
make the entire trading process more reliable, credible, 
and transparent.

Consensus mechanism
ES uses different consensus algorithms to produce dif-
ferent block intervals and transaction throughputs. 
Denote β(t, x) = {0, 1} as the parameter of the con-
sensus mechanism to show whether the consensus 
algorithm x is selected, where x ∈ {0, 1, 2} represents 
the blockchain choosing the different consensus algo-
rithms, PBFT, DPOS, and POS. β(t, x) = 1 means con-
sensus algorithm x is chosen. Otherwise, consensus 
algorithm x is not chosen in time slot t. These three 
commonly used consensus algorithms are described as 
follows, 

(1) Practical Byzantine Fault Tolerance (PBFT): FBFT 
can tolerate not only node failures but also the 
existence of certain malicious nodes or Byzantine 
nodes. PBFT has requirements on the number of 
nodes in the system. Similar to the Byzantine Gen-
erals problem, PBFT requires that the number 
of nodes in the system N be no less than 3f + 1 , 
where f is the number of “malicious nodes”. The 
“malicious node" here can be a node that is delib-
erately malicious, a node that is attacked and con-
trolled, or even a node that has lost its response. 
In short, as long as it is abnormal, it can be con-
sidered malicious. PBFT classifies each node in 
the system into two categories: primary node and 
replica nodes. They all use a state machine mech-
anism to record their actions. If the operation of 
each node is consistent, then their state machine 
will always remain consistent.

(2) Delegated Proof of Stake (DPoS): In the DPoS 
consensus algorithm, the normal operation of the 
blockchain depends on the delegates, and these 
delegates are completely equivalent. It is to vote 
through the proportion of stake, and more people 
have joined the power of the community. People 
will vote to select relatively reliable nodes for the 
maximization of their own interests, which is more 
secure and decentralized. DPOS uses a profession-
ally run network server to ensure the security and 
performance of the blockchain network. It does not 
require computing power to solve mathematical 
problems, but the holder of the stake chooses who 
will say the producer.

(3) Proof of Stake (PoS): PoS is a consensus algorithm 
that distributes interest based on the amount and 
time of stake you hold. The core logic of the POS 
mechanism is that whoever holds the stake has 
control over the network. In the POS mechanism, 
there is still computing power mining, which 
requires computing power to solve a mathemati-
cal problem. However, the difficulty of mathemati-
cal problems is related to the “coin age" of the coin 
holder. The longer the coin holder has the coin, the 
simpler the problem and the greater the probabil-
ity of mining the coin. The more stake it has, the 
greater the chance of meeting the Hash goal and 
obtaining the accounting right.

Generate energy trading blocks
ES n generates blocks according to the set block inter-
val. Before this new block is added to the blockchain, 
it needs to be transferred to other ESs (n′

�= n) for 
block verification. Let Ib(t) and Tb(t) denote the trad-
ing block size and block interval, respectively. We can 
separately obtain the block propagation time Tp(t) and 
verification time Tv(t).

where Rn,n′ is the transmission rate between ES n and n′ , 
and f b

n
′ is the clock speed of CPU consumed by verifying 

the block for ES n′ . We assume that ES has a first in first 
out (FIFO) data buffer to store the arrived but not yet 
verified blocks. Hence, the dynamics of the processing 
queue at the beginning of the t + 1 time slot can be given 
by as follows,

Therefore, the total time cost in the consensus process 
can be given by

Then, the energy transaction throughput [43] can be 
expressed as

where χ(t) is the average size of transactions.

Energy trading model
After the new block is added to the blockchain, the 
physical transaction of electricity between ES and EC 

(5)

Tp(t) = max

{

Ib(t)

Rn,n′Tn(t)

}

, Tv(t) = max

{

Ib(t)

f b
n
′

}

,

(6)Fn′ (t + 1) = max
{

Fn′ (t)− f b
n
′ , 0

}

.

(7)Ttotal(t) = Tb(t)+ Tp(t)+ Tv(t).

(8)Th(t) =
⌊Ib(t)/χ(t)⌋

Tb(t)
,
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can take place in the energy market. Let the transaction 
power be P = {P

n(t)
ge ,P

m(t)
ch } , where Pn(t)

ge  is the generat-
ing power of ES n in t time slot, and Pm(t)

ch  is charging 
power of EC m. Let xn(t) ∈ {0, 1} be the power supply 
status of the ES n. Specifically, xn(t) = 1 is the state of 
selling electricity, and xn(t) = 0 means stop the power 
supply.

In order to optimize the revenue of suppliers ESs and 
incentivize each ES to participate in electricity supply in 
blockchain-enabled smart grids, the benefit of ES n can be 
given by

where C1(P
n(t)
ge ) is the operating cost of ES n to gener-

ate power Pn(t)
ge  in time slot t, and C2(P

n(t)
ge ) is the basic 

maintenance cost of ES n to generate power Pn(t)
ge  in time 

slot t. ρm(t) is the unit payment by the EC m for the 
obtained charging power Pm(t)

ch  from ES n with different 
reputations.

Problem formulation
In order to allow ECs to obtain charging services from 
highly reliable and high-quality ESs, while ensuring the 
benefits of ESs, so as to realize a virtuous circle of energy 
trading market. We can get the following utility function in 
time slot t,

where ω1(0 < ω1 < 1) is a weight factor to combine the 
benefit Rn(t) and throughput of the blockchain Th(t) , 
and ω2 is a mapping factor that ensures that the two func-
tions is at the same level.

Let A = {P
n(t)
ge ,P

m(t)
ch ,β(t, x), xn(t)} , eventually, we can 

formulate the following energy trading and consensus 
optimization problem to maximize the benefit of electric 
consumers,

where Pmin
ge  , Pmax

ge  , and Pmax
ch  , are the minimum generat-

ing power, the maximum generating power, and maxi-
mum charging power, respectively. zmax is the maximum 
delay requirement for block generation, and we can set 

(9)
Rn(t) = Th(t)ρm(t)P

m(t)
ch − C1(P

n(t)
ge )− C2(P

n(t)
ge ),

(10)

U(t) = E

[

T−1
∑

t=1

ω1ω2

N
∑

n=1

xtnRn(t)+ (1− ω1)Th(t)

]

,

(11)

max
A

U(t)

s.t. (C1) : P
min
ge ≤ Pn(t)

ge ≤ Pmax
ge ,

(C2) : β(t, x) ∈ {0, 1}, x ∈ {0, 1, 2},

(C3) : β(0)+ β(1)+ β(2) = 1,

(C4) : Ttotal(t) ≤ Tb(t),

(C5) : 0 ≤ P
m(t)
ch ≤ Pmax

ch ,

the block interval as Tb(t) = f (β(t , x), zmax) in slot t, which 
is caused by the selection of different consensus algo-
rithms x. In (11), (C1) and (C5) are the generating power 
and charging power constraints, respectively. (C2) and 
(C3) restrict the consensus algorithm selections. (C4) is 
the constraint of the total time delay of generating block.

Multi‑Agent Deep Deterministic Policy Gradient 
(MADDPG) algorithms
In the system, there are MECs [44, 45] and NESs in each 
round, and the ECs initiate the power trade request and 
the ESs compete for the power trade right. In order to 
ensure real-time and reliable transactions, the system 
selects the status of ESs, generating power(Pge) of ESs, 
and consensus mechanism of the blockchain of the com-
peting ESs in each round. This selection problem can be 
modeled as MDP.

Considering that the system needs to carry a huge 
volume of transactions, we use a DRL algorithm 
known as MADDPG as the solution. MADDPG is 
based on deep deterministic policy gradient(DDPG). 
MADDPG improves the actor-critic framework, which 
adopts the rule of centralized training and decentral-
ized execution. It provides a general and novel idea for 
solving multi-agent problems. Firstly, similar to RL, 
agents interact with the environment according to the 
principles of MDP and receive rewards. The purpose 
is to continuously accumulate experience to make bet-
ter decisions adapting to the environment. Specifi-
cally, during slot t, the agent will update its state-value 
function according to (Sn(t),An(t), rn(t), Sn(t + 1)) as 
follows:

Then we expand ασ(t) as follows:

Where σ(t) is the TD error, which should be 0 at the best 
Q value, α is the learning rate, and γ is the discount factor 
that narrows with t increases. After the expansion of the 
TD error, R(t + 1)+ γQ(Sn(t + 1),An(t + 1)) is the TD 
Target, which minus the current Q(Sn(t),An(t)) to get 
TD error, which can be understood as the updated value 
of Q. The Target value in the formula can be expanded as 
follows:

Which means the sum of expected future rewards. Target 
is not known in slot t. But we calculate it by:

(12)Q(Sn(t),An(t)) ← Q(Sn(t),An(t))+ ασ(t).

(13)α[R(t + 1)+ γQ(Sn(t + 1),An(t + 1))− Q(Sn(t),An(t))].

(14)Target = Ut = R(t + 1)+ γR(t + 2)+ γ 2R(t + 3)+ ...

(15)Qπ (Sn(t),An(t)) = E(Ut |Sn(t),An(t)).
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This formula eliminate the State and Action after t + 1 . 
And Qπ is called the action-value function. Furthermore, 
the maximum value of Qπ can be obtained by:

Consider a Markov decision process, defined by the tuple 
(S ,A,P ′,G) representing the dynamics of the system.
State S : Space of states of the system, which are the 

input of the actor network. The state of system in time 
slot t is denoted by S(t),S(t) ∈ S.Define S(t) as follows:

where T(t) and �s(t) are the reputations and the 
stakes of blockchain nodes in time slot t, respec-
tively. Denote the sets of reputation and the sets 
of the stake by T (t) = {T1(t),T2(t), ...,TN (t)} and 
�s(t) = {�1(t),�2(t), ...,�N (t)} , respectively. F(t) is 
the computing resources of edge servers,which gener-
ate blocks and verify transactions. There are as many 
edge servers in the system as there are ES. Denote 
the sets of computing resource of edge servers by 
F(t) = {F1(t), F2(t), ..., FN (t)} . The computing resource 
of edge server n in time slot t + 1 can be given by (6).
Action A : Space of actions, a(t) ∈ A . Let a(t) denote 

the action selected by the actor network in time slot t. 
Define a(t) as follows:

where x(t) = {x1(t), x2(t), ..., xN (t)} , 
Pge(t) = {P

1(t)
ge ,P

2(t)
ge , ...,P

N (t)
ge }  , 

β(t) = {β(t, 0),β(t, 1),β(t, 2)}.
P ′

: A state transition probability matrix. 
P′(s(t + 1)|s(t), a(t)) defines the probability that the 
state s(t) transforms to s(t + 1) under action a(t).
G : The total discounted return from t to t + j can be 

expressed as:

where γ ∈ (0, 1] is a discount factor that encodes the 
importance of future rewards, and r(t) denotes the 
rewards available in the current state s(t):

MADDPG Method :

The algorithm is as shown in Algorithm 1. In line 4, we 
use ǫ − greedy to select a random action. in line 5-line 6, 
each Conn executes the action and receive a reward and 

(16)Q∗(Sn(t),An(t)) = max
π

Qπ (Sn(t),An(t)).

(17)S(t) = [T (t),�s(t), F(t)],

(18)a(t) = [x(t),Pge(t),β(t)],

(19)

G(s(t)) = r(t)+ γ r(t + 1)+ ...+ γ jr(t + j) =

j
∑

i=0

γ ir(t + i),

(20)r(t) =

{

U(t) if C1,C2,C3,C4,C5 are satisfied
0 otherwise

then load them to the replay buffer. In line7-line 11, each 
Conn updates its actor and critic and target network. 
Specifically, We let Conn, n ∈ N  act as agents. And we 
use θ = [θ1, θ2, ..., θn] represent the policy parameters of 
agents. Then we use π = [π1,π2, ...,πn] represent the 
policies of agents, each agent updates its policy parame-
ters to obtain the optimal target policy 
π∗
θn

= arg max
θn

J (θn) . For the deterministic policy gradi-

ent algorithm on continuous action space, the actor will 
output deterministic greedy actions according to the 
state, which may lead to some actions never being cho-
sen, so the random behavior policy must be used to 
ensure adequate exploration when selecting actions. So 
we should use the random policy to get actions as much 
as possible. Here we use ǫ − greedy to explore actions:

With the training progresses, ǫ is gradually reduced to 0. 
So the final result is still a deterministic policy. During 
the train, actor updates the policy by calculating the gra-
dient of J (πn) . This deterministic policy gradient formula 
is as follows:

Where an = πn(on) . o = {o1, o2, ..., on} is the local obser-
vation for the agent. And Qπ

n (o, a1, a2, ..., an) is the cen-
tralized action-value function of the agent. Each agent 
learns its own Qπ

n independently and obtains rewards, so 
agents can complete the cooperative task in this model. 
D is an experience replay buffer which is composed of 
(o, o

′
, a, r) . In addition, the centralized critic updates the 

action-value function Qπ
n according to the following min-

imization loss function:

Where, yn = rn + γQπ
n (o

′
, a

′

1, a
′

2, ..., a
′

n)|a′n=π
′
n(on)

 is the 
TD Target. Qπ

n  is the target network. And 
π

′

n =

[

π
′

1,π
′

2, ...,π
′

n

]

 is the parameter that the target pol-
icy has lagged update property. At the end of each train, 
the agent will get the learned policy parameters and 
updates its own actor and critic network parameters by:

Where ζ is the update step.
The process of MADDPG-based ESs state, Pge and 

consensus mechanism selection algorithm is shown in 
Algorithm 1.

(21)

πn(an|on) =

{

arg max
θn

J (θn), with probability 1− ǫ

rand(an), with probability ǫ

(22)∇θn J (πn) = Eo,a∼D

[

∇θnπn(an|on)∇θnQ
π
n (o, a1, a2, ..., an)

]

.

(23)L(θn) = E
o,o

′
,a,r

[

(Qπ
n (o, a1, a2, ..., an)− yn)

2
]

.

(24)θ
′

n ← ζθn + (1− ζ )θ
′

n.
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Algorithm 1 The procedure of MADDPG in system 
 
Experiment result
In this section, we exhibit the performance of the 
energy trading and consensus optimization.

Simulation parameters
We simulate the performance of the processed scheme 
based on Prtorch 1.0.2 with Python 3.9 as the software 
environment. The settings of the simulation parameters 
are shown below. we consider a energy trading system 
consisting of 20 ECs and 5 ESs. The function of the block 
interval is modeled as log(1+ β(t)zmax) . The minimum 
generating power, maximum generating power, and 
maximum charing power are respectively Pmin

ge = 0.2 W, 
Pmax
ge = 2 W, and Pmax

ch = 1 W. The maximum time of 
the consensus algorithm is zmax = 2 s. Meanwhile, we 
show the three benchmark schemes to verify the pro-
posed scheme. The first is the fixed consensus algorithm 
scheme, where one consensus algorithm is selected, 
referred as FCAS. The second is that the scheme dose 
not allocation the generating power of ES, called FPAS. 
The final is the single objective optimization, where the 
optimization problem only considers the benefits of ES, 
referred as SOAC.

Numerical results
In Fig.  2, we show the convergence of the resource 
allocation scheme based on the MADDPG algorithm. 
Observing the figure, we can find that the algorithm has 
a fast the convergence rate. Figure 3 shows the impact 
of the total reward of the system on the maximum 

Fig. 2 Convergence of Algorithm 1
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delay requirement for block generation τmax . It can 
be seen that the reward increase with the increase in 
the maximum delay requirement. Meanwhile, we find 
that the proposed scheme has the best performance, 
while the SOCA scheme has the worst performance. 
This is because the single-objective optimization does 

not consider dynamic edge computing node resource 
changes and competition.

In Fig. 4, we show the effect between reward and Pmax
ch  . 

Looking at the trend of the graph, we can find that the 
increase of Pmax

ch  has a growing trend in the influence of 
reward. Obviously, the proposed energy trading scheme 

Fig. 3 Reward v.s. τmax

Fig. 4 Reward v.s. Pmax

ch
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performs the best. At the same time, we find that the 
growth of Pmax

ch  has little effect on FPAS, because FPAS 
itself does not allocate power, so Pmax

ch  does not affect the 
performance of the FPAS scheme . The impact of Pmax

ch  
on the other two schemes, namely FCAS and SOCA, is 
relatively small. Figure 5 shows the effect of the number 
of ESs on reward. From the figure, we can see that as the 

number of ES increases, the reward shows an increasing 
trend.

In Fig. 6, we show the effect between average selection 
ratio and reputation value T(t). Obviously, we can find 
that as the ES reputation value increases, the ES is more 
likely to obtain power trading rights, and ESs with low 
reputation value will not be completely deprived of the 

Fig. 5 Reward v.s. Number of ESs N 

Fig. 6 Average selection ratio v.s. Reputation value T(t)
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power to obtain power trading rights. Figure 7 shows the 
effect between selection ratio of the ES with the differ-
ent trading rounds m and the number of ESs N. We can 
find that, for a given number of transactions, as the num-
ber of ESs increases from 5 to 100, the proportion of ESs 
with high reputation value to obtain power trading rights 
gradually decreases. This is because a high reputation is 
not the only requirement for gaining power trading rights. 
The system will give ES with low reputation value the 
opportunity to participate in the transaction. As the num-
ber of transaction rounds m increases, the proportion of 
high-reputation ESs obtaining power trading rights will 
also increase, because at this time the reputation value of 
each ES is in a relatively stable state, and the system has 
accumulated enough experience to make the best choice.

Conclusion
Although distributed energy has become a hot research 
topic, there are still many problems in distributed energy 
trading system, such as user privacy protection and 
mutual trust in trading, how to ensure the high qual-
ity and reliability of energy services, how to encourage 
energy suppliers to participate in transactions. To solve 
these problems, in this paper, we propose a blockchain 
smart grid system to optimize efficient energy transac-
tions and blockchain consensus using a reinforcement 
learning MADDPG algorithm for power supplier selec-
tion. Through the construction of a reputation evalu-
ation system, electricity consumers can obtain reliable 
and high-quality power services. In addition, the gen-
eration and charging power are optimized in this paper. 

By choosing the consensus algorithm and charging and 
discharging states, the power supplier’s revenue is maxi-
mized, thus incentivizing the power supplier to par-
ticipate in the supply trading network and ensuring the 
long-term stability of the power resource market. Finally, 
we analyze the simulation results in detail and compare 
them with existing algorithms. The feasibility of the pro-
posed algorithm can be demonstrated by the validity and 
convergence of the results.
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