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Abstract—Driven by the recent advances in electric vehi-
cle (EV) technologies, EVs become important for smart grid
economy. When EVs participate in demand response program
which has real-time pricing signals, the charging cost can be
greatly reduced by taking full advantage of these pricing signals.
However, it is challenging to determine an optimal charging
strategy due to the existence of randomness in traffic conditions,
user’s commuting behavior, and pricing process of the utility.
Conventional model-based approaches require a model of forecast
on the uncertainty and optimization for the scheduling process. In
this paper, we formulate this scheduling problem as a Markov
Decision Process (MDP) with unknown transition probability.
A model-free approach based on deep reinforcement learning
is proposed to determine the optimal strategy for this problem.
The proposed approach can adaptively learn the transition prob-
ability and does not require any system model information. The
architecture of the proposed approach contains two networks: a
representation network to extract discriminative features from
the electricity prices and a Q network to approximate the
optimal action-value function. Numerous experimental results
demonstrate the effectiveness of the proposed approach.

Index Terms—Deep reinforcement learning, model-free, EV
charging scheduling.

I. INTRODUCTION

W ITH THE recent advances in EV technologies, EVs are
becoming popular because of its various benefits [1],

[2]. EVs provide a sustainable alternative to fossil-fuel vehicles
and can significantly reduce the transport-related pollution.
Another benefit of EVs is the cost reduction for consumers
since it is cheaper to charge an EV than fill up with gasoline
[3]. As the real-time electricity price has been adopted by
many utility companies to encourage shifting energy usage
to off-peak hours [4], the charging cost can be reduced by
optimizing the charging schedules [5]. In addition, an EV can
discharge energy back to the electric grid by working in the
vehicle-to-grid (V2G) mode and thereby make money [6].

Due to the existence of randomness in traffic conditions,
user’s commuting behavior, and pricing process of the utility,
EV arrival and departure time, EV energy consumption, and
electricity prices are dynamic and time-varying. Therefore,
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efficiently managing EV charging/discharging to reduce the
cost becomes challenging.

In recent years, numerous day-ahead scheduling approaches
have been proposed for this problem [7]–[18]. For instance,
in order to handle the uncertainty in electricity price, M. A.
Ortega-Vazquez [7] developed a robust optimization approach
for residential EV charging scheduling. Similarity, J. Zhao et
al. [8] proposed an information-gap-decision based approach
to deal with the uncertainty in electricity price and optimize
day-ahead scheduling of EV fleet. In [9], [10], EV fleet
was formulated as a probabilistic virtual battery model, and
scenario-based robust approaches were proposed to deal with
the uncertainty of the EV users’ commuting behavior and
the balancing requests. M. R. Sarker et al. [11] studied the
day-ahead scheduling of battery swapping stations where the
uncertainty of the battery demand and the electricity price
was modeled by inventory robust optimization and multi-band
robust optimization, respectively. Apart from the above robust
optimization approaches, stochastic optimization is also widely
used to handle the uncertainty. To name a few, in order to
handle the randomness in the charging demand, D. Wu et al.
[12] developed a two-stage stochastic optimization method for
workplace EV charging management. In a similar way, Y. Guo
et al. [13] proposed a two-stage framework for the economical
operation of a microgrid-like EV parking deck while taking the
intermittency of renewable outputs into account. I. Momber et
al. [14] developed a two-stage stochastic linear programming
to maximize the EV aggregator’s profit in both day-ahead and
balancing market while the uncertainties of EV fleet mobility
and market price were considered. In [15], [16], the EV
aggregator was considered to bid in the day-ahead market and
offered ancillary services. Stochastic programming approaches
were applied to manage the EV fleet charging while taking into
account the randomness of the regulation signals. Although
the aforementioned methods achieved some success in day-
ahead charging/discharging scheduling, they may be unsuitable
for real-time scenarios where the variations in EV charging
demand and the electricity prices are much more complex.

Real-time scheduling strategies that can respond to dynamic
charging demand and time-varying electricity prices have
attracted a lot of attention recently. For example, L. Yao
et al. [19] developed a binary programming-based strategy
to coordinate multiple EVs charging in a parking station in
response to real-time curtailment request from the utility. G.
Binetti et al. [20] offered a formulation for the coordinated
charging problem which considered the plug-in and plug-off
frequency. Then, a real-time greedy algorithm is designed to
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solve the formulated problem in a decentralized manner. Y.
T. Liao et al. [21] employed a stochastic dynamic program-
ming method which maximizes the operator’s profit for the
real-time dispatch of an EV charging station equipped with
photovoltaic panels. Q. Huang et al. [22] presented a Markov
Decision Process (MDP) formulation for the EV scheduling
problem while considering the uncertainty and dynamics in
wind energy supply. A rollout algorithm is used to derive the
optimal scheduling policy. The above methods formulate this
scheduling problem as a model-based control problem. These
model-based approaches have obtained good results for this
EV charging scheduling problem.

Recently, model-free approaches which do not need any
system model information have achieved great success in
complex decision-making application [23]. This success has
inspired the development of model-free approaches for smart
grid applications [24]–[28]. Compared to model-based ap-
proach, the advantage of the model-free approach is that
it can learn a good control policy based on reinforcement
learning (RL) and does not rely on any knowledge of the
system [28]. An action-value function is proposed in these
approaches to assess the quality of the charging schedule. The
main difference of these approaches is how to approximate the
optimal action-value function. For instance, Z. Wen et al. [24]
use a Q-Table to estimate this function by discretizing the
electricity price and charging actions. The limitation of this
method is that it can only handle a small number of states and
actions. In addition, the discretization step greatly influences
the performance and should be properly determined. In order
to overcome the downside of the Q-Table, a combination of
linear basis function is implemented to approximate the action-
value function in [25]. However, the linear approximator is
incapable of handling the nonlinearity in the real-world elec-
tricity price and commuting behavior. In addition to this linear
approximator, A. Chi et al. [26] apply a non-linear kernel
averaging regression operator to fit the action-value function.
The drawback of this approach is that the determination
of the kernel function and its parameters greatly affect its
performance. Overall, the limited approximation capability of
the above approaches hinders their implementation in real-
world scenarios.

Neural network has the potential of being universal approx-
imator [29] and has been widely used for RL [30]–[32]. In
recent years, deep neural network achieved promising results
in learning complex mapping from high-dimensional data. By
utilizing deep neural network, deep RL has obtained significant
success in many complex decision-making applications. For
instance, a deep Q-network has achieved a level comparable to
that of a professional human in the Atari 2600 [23]. However,
to the best of our knowledge, application of deep RL in real-
time EV charging/discharging problem has not been reported
in the literature.

In this paper, the EV charging/discharging scheduling prob-
lem is formulated as an MDP from the user’s perspective.
The objective is to find cost-efficient charging/discharging
schedules to take full advantage of the real-time electricity
price while fulfilling user’s driving demand. A model-free
approach is proposed to determine the optimal schedules in

a real-world scenario based on the deep RL. The proposed
approach uses the past electricity prices and battery SOC as
inputs, and outputs real-time charging/discharging schedules.
Unlike the traditional model-based methods, the proposed
approach does not require any system model information.
Numerous experimental results demonstrate the effectiveness
of the proposed approach.

The contributions of this paper are threefold.

• An MDP with unknown transition probability is con-
structed from the user’s perspective to formulate the EV
charging/discharging scheduling problem. The random-
ness of the electricity price and the commuting behavior
is taken into consideration to formulate the real-world
scenarios.

• A deep RL based model-free approach which does not
require any system model information is proposed to de-
termine an optimal strategy for this real-time scheduling
problem.

• A representation network is designed to extract the fea-
tures from the electricity prices. After concatenating these
features with battery SOC, the concatenated features are
fed into a Q network to approximate the optimal action-
value function.

The rest of the paper is organized as follows. The prob-
lem formulation is introduced in Section II. Then, a deep
RL based approach is proposed in Section III to solve this
problem. In Section IV, numerous experiments are presented
to demonstrate the effectiveness of the proposed approach.
Finally, Section V gives a conclusion.

II. PROBLEM FORMULATION

We formulate the real-time EV charging/discharging
scheduling problem from the user’s perspective. When the
EV is at home, we determine the charging/discharging action
every hour. A finite MDP with discrete time step is applied to
formulate this problem. Specifically, the time interval between
two adjacent steps is one hour. At time step t, we observe
the system state st which includes the information about the
remaining energy in the EV battery and the past 24-hour
electricity prices. Based on this information, we will choose
the charging/discharging action at. This action represents
the amount of energy that the EV battery will be charged
or discharged during this time interval. After executing this
action, we can observe the new system state st+1 and choose
the new charging/discharging action at+1 for time step t+ 1.

MDP provides a mathematical architecture for modeling
decision making in situations where outcomes are partly
random and partly under the control of a decision maker.
A MDP is a five-tuple (S,A,P.(·, ·),R.(·, ·), γ), where S is
the system states, A is a finite set of actions, P.(·, ·) is the
state transition probability, R.(·, ·) is the immediate reward,
and γ is a discount factor. Considering the randomness of
traffic conditions and driver’s commuting behavior, the daily
EV energy consumption, arrival time and departure time are
supposed to change randomly. The details about the MDP
formulation are shown as follow.
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1) State: The system state at time step t is defined as a
vector st = (ut, Et, Pt−23, . . . , Pt). This vector encapsulates
three types of information: (1) ut indicates whether the EV
is at home or not; (2) Et represents the remaining energy in
the EV battery; (3) (Pt−23, . . . , Pt) denotes the past 24-hour
electricity prices.

2) Action: Given the state st, the action at represents the
charging/discharging power. Let at be positive when the EV
is charging and negative when discharging. The EV user can
make money by charging the battery when the electricity price
is low and discharging the battery when the price is on-peak.
The charging and discharging power is constrained as below,

−emaxdis ≤ at ≤ emaxch , (1)

where emaxch and emaxdis are the allowed maximum charging
and discharging power of the EV battery, respectively. As
suggested by [33]–[35], we assume that the EV charger
provides discrete charging power, i.e., at ∈ {e1, ..., eL}.

3) State transition: The state transition from the state st to
st+1 is denoted as

st+1 = f(st, at, ωt), (2)

where the state transition is not only controlled by the action
at but also influenced by the randomness ωt. Specifically, the
state transition for Et is controlled by at and can be explicitly
expressed by a deterministic battery model Et+1 = Et + at.
For ut and Pt, the state transition is subject to randomness
since the arrival time, departure time, and next-hour electricity
price are unknown. Finding an accurate distribution model
of the randomness ωt can be difficult since it is influenced
by many factors, such as traffic condition, user’s commuting
behavior, pricing process of the utility, etc. To solve this
problem, a model-free approach is proposed to learn the state
transition from real system data as shown in Section III.

4) Reward: The reward at time step t is defined from user’s
perspective as

rt =

{
−Pt · at − Cat , t 6= tβ

−Pt · at − Cat − τ · (Emax − Et)2 , t = tβ
(3)

where tβ is the time step when the EV leaves home.
In this reward, Pt · at represents the charging cost at time

step t. When the EV is charging, this term is positive. On the
contrary, if the EV discharges energy back to the power grid
to make money, this term is negative. As suggested by [7],
[11], the price of selling electricity to the grid is the same as
that of purchasing electricity. This scenario is based on the
net metering arrangement [36] under which a bi-directional
meter is applied to record both the electricity purchased from
the grid and the electricity fed back to the grid. Under this
arrangement, selling electricity and purchasing electricity have
the same price.
Cat denotes the cost of battery degradation for a charg-

ing/discharging of at kWh. According to [7], we assume that
the battery degradation is only sensitive to the number of
cycles, and the degradation cost is estimated as

Cat = CE
∣∣∣mk

100

∣∣∣ at
Emax

(4)

where CE denotes the total battery cost, mk represents the
slope of the linear approximation of the battery life as a
function of the cycles, and Emax is the battery capacity.

(Emax − Et)2 measures user’s “range anxiety” which is the
fear that the EV has insufficient energy to reach its destination.
This term is proposed to penalize the amount of uncharged
battery energy, Emax − Et. Larger uncharged energy will
result in bigger penalty. In practice, some users are likely to
tolerate large range anxiety to obtain low charging cost. In
order to measure the user’s preference towards the cost-saving
objective and the range anxiety reducing objective, an anxiety
coefficient τ is introduced. τ is measured in $/kWh2 such that
the range anxiety term has the same measurement unit as the
charging cost term.

5) Action-value function: The quality of a charg-
ing/discharging schedule a under a given system state s is
assessed by the expected total sum of future rewards for the
horizon of K time steps as follow

Qπ(s, a) = Eπ

[
K∑
k=0

γk · rt+k

∣∣∣∣∣ st = s, at = a

]
, (5)

where Qπ(s, a) is called action-value function, π is the EV
charging/discharging policy which maps from a system state to
a charging/discharging schedule, and 0 < γ < 1 is the discount
factor, which balances the importance between the immediate
reward and future rewards. For instance, when γ = 1, future
reward is as important as the immediate reward and the policy
is foresighted. When γ = 0, only immediate reward is taken
into consideration and the policy is shortsighted.

The objective of this scheduling problem is to find an
optimal π∗ to maximize the action-value function as

Q∗(s, a) = max
π

Qπ(s, a), (6)

where Q∗(s, a) represents the optimal action-value function.

III. PROPOSED APPROACH

It is difficult to analytically determine the optimal policy
π∗ since the future electricity prices and user’s commuting
behavior are unknown. A reinforcement learning (RL) solution
is to iteratively update the action-value function Q(s, a) based
on the Bellman equation [37]

Qi+1 (s, a) = E
[
rt + γmax

at+1

Qi (st+1, at+1)

∣∣∣∣ st = s, at = a

]
.

(7)
As the number of iterations i → ∞, Q(s, a) will converge
to the optimal action-value function Q∗(s, a) [38]. Then, the
optimal schedules are determined by a greedy strategy

a∗ = argmax
a∈A

Q∗ (s, a) . (8)

Q∗(s, a) is generally approximated by a look-up table
[38]. However, since the electricity price in our problem is
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Fig. 1. The Overall diagram of the proposed approach for EV charging/discharging scheduling. The deep RL based approach uses the past 24-h electricity
prices and battery SOC as inputs, calculates the reward r(t), and outputs real-time charging/discharging schedules.

continuous and high-dimensional, an extremely large table is
required to approximate Q∗(s, a) and it is intractable to update
such a large table. In this paper, a Deep Neural Network
(DNN) is proposed to approximate Q∗(s, a), and this approach
is called deep reinforcement learning (RL).

The overall diagram of the proposed approach based on
deep RL for EV charging/discharging scheduling is illustrated
in Fig. 1. The representation network extracts discriminative
features from the electricity price. After concatenating these
features with battery SOC, the concatenated features are fed
into a Q network to approximate the action-value of all feasible
schedules under the given input state. The schedule with the
largest action-value is selected as the EV charging/discharging
schedule.

A. Architecture of Deep Neural Network

1) Representation Network: Extracting discriminative fea-
tures from the raw data is a crucial step to improve the action-
value function approximation. Good features should contain
the information about the electricity price trends. With these
features, the scheduling strategy can minimize the charging
cost. In this paper, a representation network is proposed to
extract these features.

Since electricity price fluctuates in a quasiperiodic way and
has a natural temporal ordering, it is reasonable to infer future
price trends from past electricity prices. Long Short-Term
Memory (LSTM) network is known for its strong ability to
model the time dependencies of time-series data [39], [40], and
has achieved promising results in smart grid applications, such
as load forecasting [41], [42]. In the representation network
of Fig. 1, electricity price trends are captured by a LSTM
network. Its input is the past 24-h electricity price and its
output is the features containing information about future price
trends.

The idea behind the LSTM network is to make use of
sequential information, such as the real-time electricity prices.
LSTM network performs the same processing for every ele-
ment of the sequence, with the output being dependent on the
previous computations. The information about what has been

d
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Fig. 2. An unfolded LSTM network.

calculated so far can be stored or “memorized” in the LSTM
cells. The typical structure of an LSTM network is shown in
Fig. 2.

Fig. 2 shows an LSTM network being unfolded into a full
network. By unfolding, we simply mean that we write out
the network for the complete sequence. For this EV charging
scheduling problem, the LSTM network would be unfolded
into a 23-layer neural network. Specifically, the input of the
first layer is dt−22 = Pt−22 − Pt−23 where Pt−22 and Pt−23
represent the electricity price at time step t − 22 and t − 23,
respectively. W and R represent the corresponding parameters
which are shared across all the layers. yt−22 denotes the output
of the first layer, and ct−22 denotes its cell state. yt−22 and
ct−22, which contain the information of the past electricity
price, are passed into the second layer. This process is repeated
until the last layer.

The structure of the LSTM cell is shown in Fig. 3. The
key to the LSTM network is the cell state ct. The LSTM
network has the ability to add information into or remove in-
formation from the cell state, carefully regulated by structures
called gates. Gates are a way to optionally let information
through. Specifically, an input gate determines the amount of
information to be added into the cell state while a forget gate
determines the amount of information to be inherited from
the previous cell state ct−1. The input gate and forget gate are
shown in Eq. (9) and Eq. (10), respectively,
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it = σ (Wi ∗ dt +Ri ∗ yt−1 + bi) (9)
ft = σ (Wf ∗ dt +Rf ∗ yt−1 + bf ) , (10)

where Wi, Ri, Wf , and Rf are the matrices of weights for the
input gate and forget gate; bi, and bf are the vectors of biases
for these gates; σ is the sigmoid function that outputs numbers
between 0 and 1, describing how much of information should
be let through.

The input information zt is shown as

zt = h (Wz ∗ dt +Rz ∗ yt−1 + bz) , (11)

where h denotes the hyperbolic tangent function; Wz and Rz
are the matrices of weights; bz is the vector of biases. The
input gate would determine the amount of zt to be added into
the cell. Therefore, the cell state is calculated as

ct = it � zt + ft � ct−1, (12)

where � represents the element-wise multiplication operation;
it�zt denotes the amount of information to be added from zt;
ft � ct−1 denotes the amount of information to be inherited
from the previous cell state ct−1.

The output of the cell is determined by the output gate ot =
σ (Wo ∗ dt +Ro ∗ yt−1 + bo) where Wo, Ro are the matrices
of weights, and bo is the vector of biases. Thus, the output of
the cell is shown as

yt = ot � h (ct) . (13)

For detailed information about LSTM network, readers can
refer to [43].

The output of the LSTM network, yt, is concatenated with
the battery SOC which is a scalar. These concatenated features,
xt, contain information about both the future price trends and
the battery SOC. The information of the future price trends is
essential to reduce the charging cost, while the information of
the battery SOC is important to ensure the EV can be well-
charged. Then, these concatenated features are fed into the Q
network to approximate the optimal action-value function.

2) Q Network: The Q network is a three-layer fully-
connected neural network which can uniformly approximate
continuous functions [29]. The input layer is fully-connected
to a hidden layer with V units, and the value of the hidden
unit is

vt = g (W1 ∗ xt + b1) , (14)

where xt denotes the input vector, g is the rectified linear
activation function, W1 is the matrix of weights, and b1 is the
vector of biases. Then, the hidden layer is fully-connected to
the output layer. The output of the Q network is the action-
value for all feasible charging/discharging schedules under
system state s, i.e.,

Q (s, a) = g (W2 ∗ vt + b2) , (15)

where W2 is the matrix of weights, and b2 is the vector of
biases. Then, the schedule with the largest action-value is
outputted as the charging/discharging schedule.

B. Training of Deep Neural Network

Algorithm 1 shows how to train the DNN based on deep
RL. The parameters of the DNN are denoted as θ = {θ1, θ2}
where θ1 = {Wz, Rz, bz,Wi, Ri, bi,Wf , Rf , bf ,Wo, Ro, bo}
represent the parameters of the representation network, and
θ2 = {W1, b1,W2, b2} represent the parameters of the Q
network. The input of Algorithm 1 is the electricity prices,
battery SOC, and reward r. Its output is the DNN’s parameters
θ that include the parameters of the representation network and
the parameters of the Q network.

In line 1 of Algorithm 1, the DNN’s parameters θ are
randomly initialized. After that, in line 2, shadow parameters
θ̄ are copied from θ. Then, the parameters θ are updated for
M epochs in the outer loop. Each epoch starts at time step
tA which represents EV arrival time. Each epoch ends at time
step tD which represents EV departure time. The time horizon
of each epoch equals to tD − tA. At the beginning of each
epoch, we first obtain the initial state stA . After that, in the
inner loop starting from line 5, the EV charging/discharging
is scheduled from time step tA to tD. At each time step, the
charging/discharging schedule at is selected based on the ε-
greedy search method, i.e., the schedule is randomly selected
with probability ε, otherwise the proposed DNN is applied to
choose the schedule. Then, we execute the selected schedule
at, observe the reward rt, and process to the new state st+1.
After that, in line 8, the transition (st, at, rt, st+1) is stored
in a replay memory D. The transitions in the replay memory
are utilized to update the parameters θ. Specifically, in line
9, a minibatch of transitions F = {(sj , aj , rj , sj+1)}#Fj=1 are
randomly selected from the replay memory D. With these
transitions, the target action-value q̄j is calculated as

q̄j = rj + γQ

(
sj+1, argmax

a
Q (sj+1, a; θt) ; θ̄

)
. (16)

Then, in line 11, the loss function can be derived as

L (θt) =

#F∑
j=1

[q̄j −Q (sj , aj ; θt)]
2
, (17)
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Algorithm 1 Training of Deep Neural Network
Input: Electricity prices, battery SOC, and reward r
Output: DNN’s parameters θ

1: Randomly initialize DNN’s parameters θ.
2: Initialize shadow parameters θ̄ = θ.
3: for Epoch=1:M do
4: Obtain the initial state stA .
5: for Time step t=tA:tD do
6: Select schedule at based on ε-greedy search.
7: Execute schedule at, observe reward rt, and

process to the new state st+1.
8: Store transition (st, at, rt, st+1) in D.
9: Sample minibatch of transitions

F = {(sj , aj , rj , sj+1)}#Fj=1 from D.
10: q̄j ←− rj + γQ

(
sj+1, argmaxaQ (sj+1, a; θt) ; θ̄

)
.

11: Calculate the loss function
L (θt) =

∑#F
j=1 [q̄j −Q (sj , aj ; θt)]

2.
12: Update parameters θt+1 = θt − η5θt L (θt).
13: Every B steps reset θ̄ = θ.
14: end for
15: end for

which is the error between the target action-value q̄j and
the action-value Q (sj , aj ; θt) estimated by the DNN. Then,
this loss function is minimized by updating the parameters θ
according to gradient rule as

θt+1 = θt − η5θt L (θt) , (18)

where η is the learning rate, and 5θtL (θt) represents the
gradient of the loss function. After that, at every B steps,
the shadow parameters are reset as θ̄ = θ. After the train-
ing process, the parameters θ will be outputted for the EV
charging/discharging scheduling.

It is worth noting that using the reply memory has two
benefits [44]. First, storing the transitions in the replay memory
contributes to better data efficiency because each transition can
be used multiple times to update the parameters. Second, the
replay memory improves the stability of the training process.
This is because most minibatch optimization algorithms have
the assumption that the data is independent and identically
distributed (i.i.d.) [45]. However, without a replay memory,
the updates of parameters would be based on consecutive tran-
sitions that are highly correlated. Learning from consecutive
transitions would violate this i.i.d. assumption and result in
high variance of the updates of the parameters, which leads to
slower and potentially less stable learning [46], [47]. Storing
historical transitions in the replay memory and randomly
sampling the transitions from the replay memory break the
temporal correlations between the transitions and thus alleviate
this problem.

C. Real-Time EV Charging/Discharging Scheduling

The DNN’s parameters trained by Algorithm 1 will be fixed
for the real-time EV charging/discharging scheduling. The
scheduling algorithm is presented in Algorithm 2. Its input

Algorithm 2 Real-Time EV Charging/Discharging Scheduling
Input: State st, including electricity prices and battery SOC.
Output: EV charging/discharging schedules atA:tD .

1: Load the DNN’s parameters θ trained by Algorithm 1.
2: for Time step t=tA:tD do
3: Obtain past 24-h electricity prices.
4: Representation network extracts features from

the electricity prices.
5: Concatenate these features with battery SOC.
6: Q network calculates action-value Q (st, a; θ).
7: at = argmaxa∈AQ (st, a; θ)
8: Output EV charging/discharging schedule at.
9: end for

10: Return: atA:tD

is the electricity prices and battery SOC. Its output is the EV
charging/discharging schedules.

In Algorithm 2, we first load the parameters of DNN
trained by Algorithm 1. In the loop starting from line 2, the
DNN is implemented to generate the EV charging/discharging
schedules from time step tA to tD. At each time step, the rep-
resentation network is applied to extract features from the past
24-h electricity prices. Then, these features are concatenated
with battery SOC. After that, Q network calculates action-
value Q (st, a; θ) based on these concatenated features. Then,
the EV charging/discharging schedule at is selected in line 7
as at = argmaxa∈AQ (st, a; θ). Finally, the schedule at is
outputted.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed approach on
multiple case studies and demonstrate its effectiveness by
simulation analysis. The details about the experimental setup
are presented in Section IV-A. We present the experimental
results of case study I in Section IV-B where the battery
degradation cost is ignored. Then, the effect of this degradation
cost is analyzed in case study II in Section IV-C. Finally, we
explain how to choose the neural network structures and the
hyperparameters in Section IV-D.

A. Experimental Setup

The performance of the proposed approach is evaluated
under a real-world scenario. The real-world hourly electricity
price starting from 1st of February 2014 and lasting 360
days is downloaded from the California ISO [48]. This price
data is separated into training and testing data. In each 30
consecutive days, the first 20 days are selected for training, and
the remaining 10 days are used for performance evaluation.
As suggested by [19], user’s commuting behavior is modeled
as random variables. Specifically, the EV arrival time, the
departure time, and the battery SOC at the arrival time obey
truncated normal distributions. The distributions are presented
in Table. I. The arrival time tA is sampled from N

(
18, 12

)
and is bounded between 15 and 21. For the departure time
tD, its distribution N

(
8, 12

)
is bounded between 6 and 11.

The battery SOC bounded between 0.2 and 0.8 is sampled
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TABLE I
RANDOM VARIABLES FOR COMMUTING BEHAVIOR.

Distribution Boundary

Arrival time tA ∼ N
(
18, 12

)
15 ≤ tA ≤ 21

Departure time tD ∼ N
(
8, 12

)
6 ≤ tD ≤ 11

Battery SOC SOC ∼ N
(
0.5, 0.12

)
0.2 ≤ SOC ≤ 0.8

from N
(
0.5, 0.12

)
. It is worth noting that our learning-based

approach does not rely on any knowledge of the distributions
of these random variables. Thus, our approach can scale to
different modeling mechanisms. We assume that a Nissan
Leaf with battery capacity Emax = 24 kWh is used in our
experiments. When the EV is at home, the charger provides 7
levels (6 kW, 4 kW, 2 kW, 0 kW, -2 kW, -4 kW, -6 kW) for
EV charging and discharging. The positive values represent
the charging process while the negative ones refer to EV
discharging.

The deep RL based model-free approach is proposed to
generate the optimal charging/discharging schedules. The dis-
counted factor γ is set to 0.99 so that the proposed approach
can obtain a foresighted strategy. In the representation net-
work, a 128-dimension feature vector is extracted from the
past 24-h electricity price. Then, this vector is concatenated
with the SOC and fed into the input layer of the Q network.
The number of the units in its hidden layer and output layer are
64 and 7, respectively. The parameters of the representation
network and the Q network are randomly initialized and
updated by gradient descent during the training process. The
batch size of the sampled transitions F for training is 32. The
value of B is set as 500. The number of training epochs, M ,
equals to 50,000. The training process takes about 1.5h on
the computer with one NVIDIA TITAN Xp GPU and one i7-
6800K CPU. After the training process, the proposed approach
can be deployed for the EV charging/discharging scheduling.
It takes about 3.7 ms to generate one schedule. The code is
written in Python with TensorFlow, a DNN package developed
by Google Brain.

B. Case Study I

In this case study, the proposed model is trained to generate
EV charging/discharging schedules when the battery degra-
dation cost is ignored. The training process is presented in
Section IV-B1. Then, the proposed approach is evaluated and
compared with several benchmark methods in Section IV-B2.
Finally, the effect of user’s range anxiety on the cost-saving
objective is discussed in Section IV-B3.

1) Training Process: The proposed DNN is trained for
50,000 epochs to learn the optimal EV charging/discharging
scheduling. The anxiety coefficient τ is set to 0.01. The
training process takes about 1.5 hours on the workstation
mentioned in Section IV-A. Each epoch starts when the EV
arrives home and ends when it leaves home. In each epoch,
we calculate the cumulative rewards

∑tD
t=tA

rt. The evolution
of the cumulative rewards over 50,000 epochs is illustrated

Fig. 4. The evolution of the cumulative rewards during the training process.

in Fig. 4. In the first 7,000 epochs, the charging/discharging
schedule is randomly selected from the 7 feasible levels. Then,
from epoch 7,000 to epoch 14,000, the schedule is randomly
selected with probability ε, otherwise, it is chosen by the
proposed DNN. In this phase, the probability ε is reduced from
1.0 to 0.1, and remains 0.1 afterward. It can be observed from
Fig. 4 that the cumulative rewards start to increase gradually
after epoch 18,000. Then, at epoch 35,000, the cumulative
rewards converge around −0.2 $ with small oscillations. This
result demonstrates that the proposed approach succeeds in
learning a policy to maximize the cumulative rewards.

2) Performance Evaluation: In this section, the proposed
approach is evaluated and compared with several benchmark
solutions, including model predictive control (MPC), day-
ahead, fitted-Q iteration (FQI), and uncontrolled strategy. For
the MPC solution [49], the EV arrival time and depart time,
and the battery SOC are known in advance. We evaluate MPC
with two different forecasting models. For the first forecasting
model, a fully-connected neural network (NN) with 24-20-20-
8 units is used to provide the dynamic prediction of the future
electricity prices over a rolling horizon of 8 hours. Based on
the forecasted prices, a scheduling strategy over the rolling
horizon is derived and only the first hour’s schedule is im-
plemented. At the next hour, the above procedure is repeated.
Similarly, for the second forecasting model, an LSTM network
is used to forecast the future electricity prices. This LSTM
network is the same as the one in our representation network.
We also evaluate MPC under an ideal situation where the
future electricity prices are all known in advance. For the day-
ahead solution, we assume the EV arrival time and depart time,
and the battery SOC are known in advance. Autoregressive
(AR) model is applied to forecast the electricity prices, and its
order is 24, i.e. AR (p=24). Then, the EV charging/discharging
scheduling problem is solved using YALMIP. For the FQI
solution [50], a decision tree is used to approximate the action-
value function. Then, the charging/discharging schedule is
determined based on the greedy strategy in Eq. (8). For the
uncontrolled solution, the EV is charged immediately with the
maximum charging rate when it arrives home.

The 120 test days are used for performance evaluation. In
each day, the charging cost is calculated as

∑tD
t=tA

Pt · at.
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Fig. 5. Cumulative charging cost of the proposed and benchmark solutions
over the 120 test days. The percentage terms on the right illustrate the cost
reduction of the corresponding solutions with respect to the uncontrolled
solution.

The cumulative charging costs of the proposed and benchmark
solutions over the test days are presented in Fig. 5. The
percentage terms on the right illustrate the cost reduction of
the corresponding solutions with respect to the uncontrolled
solution. We can observe that the proposed approach (blue
solid line) reduces the charging cost by 77.30% in com-
parison with the uncontrolled solution (purple dotted line).
The other four benchmark solutions, FQI (orange dash-dotted
line), day-ahead (black circles), MPC+NN (red dash line),
and MPC+LSTM (black dotted line) only reduce the cost by
46.29%, 59.10%, 69.87%, and 75.04%, respectively. These
results demonstrate the effectiveness of the proposed approach
for this EV charging/discharging scheduling problem. We
also notice that MPC with real future price (green triangles)
reduces the charging cost by 86.29%. Comparing the results
of MPC, we can find that the performance of MPC relies on
the accuracy of a forecasting model. However, our proposed
approach does not need a forecasting model.

To further investigate the performance of the proposed
approach, the charging/discharging patterns over 7 consecutive
days are shown in Fig. 6. The green regions in each subfigure
indicate the periods of time when the EV is not at home.
In Fig. 6a, the hourly electricity price ($/kWh) is illustrated
with the red line, while the hourly charging/discharging energy
(kWh) is represented by the blue bar. One can observe that
the proposed approach learns to charge when the electricity
price is low and to discharge when the price is on-peak.
These charging/discharging patterns verify the proposed ap-
proach’s capability to forecast the electricity price trends. The
remaining battery energy at each hour is presented in Fig. 6b.
The battery is well-charged when the EV leaves home. These
results demonstrate that the proposed approach can reduce the
charging cost as well as satisfy user’s driving demand.

3) Discussion of Range Anxiety: In the real-world scenario,
different users may have a different preference towards the
cost-saving objective and the range anxiety reducing objective.
The effect of the anxiety coefficient τ on these two objectives
is demonstrated in Fig. 7 where the coefficient increases from

0 to 0.01 with a step of 0.001. In Fig. 7, the range anxiety and
charging cost are averaged over the 120 test days. The blue
line with circle marks represents the average range anxiety,
while the red line with square marks is the curve for average
charging cost. The negative value of the charging cost indicates
that the EV earns money by selling electricity to the utility. We
can observe that large anxiety coefficient leads to small range
anxiety but large charging cost. This figure demonstrates that
the coefficient can balance the trade-off between the range
anxiety and the charging cost. Specifically, if the user only
needs to drive for a short distance, the coefficient can be set
to a small value. Consequently, the proposed approach tries to
reduce the charging cost. On the contrary, if the user wants to
reduce the range anxiety, this coefficient can be set to a high
value.

In order to further demonstrate the effect of the anxiety
coefficient τ , the daily charging cost and the battery SOC
when the EV leaves home are presented in Fig. 8. This figure
shows the results over 120 test days with two different τ .
When τ is set to 0.002, the proposed approach can achieve
a lower charging cost, but the battery is about half charged.
On the contrary, when τ is set to 0.008, the battery is almost
fully charged, but the charging cost increases. These results
demonstrate that the proposed approach can adaptively adjust
to user’s different preferences by setting different anxiety
coefficient.

C. Case Study II

In this case study, we conduct extensive experiments to
analyze the effect of the battery cost on the EV charg-
ing/discharging scheduling. In the experiments, the battery
cost is set to [400, 300, 200, 100, 80, 60, 40, 20] $/kWh, respec-
tively. The slope mk = −0.015.

Fig. 9 shows the cumulative charging cost, vehicle-to-grid
(V2G) cost, and battery degradation cost over the 120 test
days under different battery costs. The blue line with square
marks illustrates the cost associated with charging the EV.
The red line with triangle marks shows the V2G cost where
the negative values indicate the EV discharges energy back to
the grid and thereby make money. The black line with star
marks shows the battery degradation cost. We can observe
that the proposed model determines to discharge energy back
to the grid to make money when the battery cost is less
than 100 $/kWh. The smaller the battery cost is, the more
energy the EV discharges back to the grid. As the battery cost
increases up to 100 $/kWh, the V2G stops being attractive
and the proposed model determines to only charge the EV.
In conclusion, the battery degradation cost plays an important
role in determining the EV charging/discharging schedules,
and the proposed model can well adjust to the scenarios with
different battery degradation costs.

D. Discussion of neural network structures and hyperparam-
eters

The reason we choose LSTM network to extract features
from the electricity prices is that it has strong ability to model
the time dependencies of time-series data [39], [40] and has
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Fig. 6. Charging/discharging patterns of the proposed approach over 7 consecutive days: (a) Hourly electricity price (red line) and charging/discharging energy
(blue bar); (b) Remaining battery energy. The green regions indicate that the EV is not at home.
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Fig. 7. Average range anxiety (blue circle) and charging cost (red square)
under different anxiety coefficient.

achieved promising results in smart grid applications [41],
[42]. We further clarify the importance of the LSTM network
by conducting an experiment where the LSTM network is
removed. In other words, the electricity prices are directly
concatenated with the battery SOC. Then, these concatenated
features are fed into the Q network. Without the LSTM
network, the accumulated charging cost over the 120 test days
is 27.71 $. However, the accumulated charging cost of our
original model with the LSTM network is 17.02 $. The LSTM
network contributes to a 38.59% reduction in the charging cost.

The reason we choose a three-layer fully-connected neural
network for the Q network is that it can uniformly approxi-
mate continuous functions [29], and its effectiveness for deep
reinforcement learning (RL) has been validated in [23]. In the

(a) Charging cost

(b) Battery SOC

Fig. 8. Daily charging cost and battery SOC when the EV leaves home under
different anxiety coefficient τ .
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Fig. 9. Cumulative charging cost, vehicle-to-grid (V2G) cost, and battery
degradation cost over the 120 test days under different battery cost.

fully-connected neural network, the number of the input units
is 129, which equals to the dimension of its input. The number
of the output units is 7, which equals to the number of feasible
actions for the EV charging scheduling. For the number of
hidden units, there is an empirically-derived rule-of-thumb,
i.e., the optimal number of the hidden units is usually between
the number of input units and the number of the output units.
In our original model, the number of hidden units is 64, and
the accumulated charging cost over the 120 test days is 17.02
$. We also conduct experiments with another two numbers of
hidden units, 32 and 128. Their accumulated charging cost
are 17.29 $ and 17.13 $, respectively. We can see that the
performance is insensitive to the number of hidden units when
this number is chosen between the number of input units and
the number of the output units.

The discounted factor γ balances the importance between
the immediate reward and future rewards. When γ = 0,
the learned policy is “myopic” in being concerned only with
maximizing immediate reward. As γ approaches 1, the future
rewards are taken into consideration more strongly, and the
learned policy becomes more farsighted. In our original model,
γ = 0.99, which is the same as that used in [23]. For our
original model, the accumulated charging cost over the 120
test days is 17.02 $. We also conduct experiments with another
two γ values, 0.5 and 0.8. Their accumulated charging cost
are 36.92 $ and 24.65 $, respectively. We can observe that the
performance is sensitive to the discounted factor γ. γ should
be close to 1 such that the learned policy is farsighted.

Since GPU is used to train the neural network, the batch
size is generally determined by the following criteria [51]:

• It is common for power of 2 batch size to offer better
runtime. Typical power of 2 batch sizes range from 32 to
256.

• Since all examples in the batch will be processed in
parallel in the GPU, the amount of memory usage will
scale with the batch size. For many hardware setups, this
is the limiting factor in batch size.

Bengio states that batch size = 32 is a good default value

[52]. In our model, the batch size is set as 32 accordingly.
During the training process, the number of training epochs

can be determined by early stopping [52]. Specifically, we set
the number of epochs to a large number and stop the training
when the cumulative rewards does not improve.

In our proposed approach, the probability ε is annealed
linearly from 1.0 to 0.1, and fixed at 0.1 thereafter. This kind
of design is consistent with that in [23] and is commonly used
by reinforcement learning researchers to balance the trade-off
between exploration and exploitation [38].

V. CONCLUSION

In this paper, we formulate the EV charging/discharging
scheduling problem as a MDP with unknown transition prob-
ability from the user’s perspective. In the problem formulation,
the randomness of both the electricity price and the commut-
ing behavior are considered. We propose a deep RL based
approach to determine an optimal strategy for this real-time
scheduling problem. The proposed approach is a model-free
approach which does not need any system model information.
In the proposed approach, a representation network is applied
to extract features from the electricity prices. Then, a Q
network is implemented to approximate the optimal action-
value function based on these features. Finally, the action that
maximizes this function is selected for the scheduling problem.
The parameters of these two networks are updated by gradient
descent during the training process. Experimental results show
that the proposed approach outperforms various benchmark
solutions. In addition, the proposed approach can adaptively
adjust to different users’ preferences towards the cost-saving
objective and the range anxiety reducing objective.
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