
Chapter 4
Mechanical Properties of the Body

Abstract The composition and structure of the structural components of the body,
including bones, ligaments, tendons, and cartilage, are first presented. The mechan-
ical properties of these body components begin by investigating their stress-strain
relationships in the harmonic regime. Analysis is improved bymodeling their nonlin-
ear, time-dependent properties and then their time-dependent, viscoelastic properties.
These models are used to understand how bones can bend under unusual conditions,
and the occurrence of fractures and sports injuries, along with ways to avoid these
unwanted events.

We now examine the mechanical properties of organs and components of the body.
In subsequent chapters we will consider their other materials properties, specifically
their thermal, electrical, and optical properties.We need to understand thesemechan-
ical properties to evaluate how body components function and to assess the impact
of injuries. They are also essential in assessing the suitability of biomedical devices,
such as hip replacements. Research and development teams are rightly concerned
with how human bodies react to such prosthetic devices in a biochemical sense and
whether they will “reject” the implants. They are equally concerned with how such
implants match the other body components in a mechanical sense [8] (Problems4.13
and 4.14, Fig. 4.79). For example, if they are softer than what they replace, they will
wear out; if they are harder, there could be excessive wear on other body parts. In
Chap.3 we also saw how human motion is affected by the mechanical properties of
objects outside the body, such as running shoes, floors, and vaulting poles.

Our goal in this chapter is to characterize the mechanical behavior of body com-
ponents by using basic models that are routinely used in materials science and engi-
neering. Once we have modeled the body component, we will use that model to
understand the consequences of that modeled property, such as: For a given impact,
will the bone break or just bend?

These mechanical properties all have a biological basis that is very complex and
this will not be discussed here. Much of these details are still not understood well
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248 4 Mechanical Properties of the Body

at all. We will assume that these properties have known averages among humans.
There are distributions about these averages due to variations in our genes, gender,
age, health, past injuries, and so on.

From a mechanical perspective, the different parts of the body can be classified in
a variety of ways. For example, components can be either passive or active. Passive
components, such as bones and tendons, respond to outside forces. Active elements,
muscles, generate forces. This division is not perfect. Muscles are indeed active
elements, but they also have some properties of passive components, and when they
are modeled, the model must include both their active and passive properties. These
passive elements and properties are discussed in this chapter. Active elements are
discussed in Chap. 5.

The response of passive elements to applied stresses (forces/area) is by no means
simple. Passive components can respond to forces in ways that are either independent
or dependent of time. By this we mean that the component can respond to only
currently applied forces or to both current forces and forces applied earlier.

The simplest type of passive response is harmonic or Hookean behavior, in which
the properties of the material behave exactly like that of an ideal harmonic oscillator
spring. Deformations are linear with the applied forces and stresses. The response is
independent of time. All the potential energy stored in such media can be extracted.
Bones and tendons are fairly well (but not perfectly) modeled as such elastic media.
The elastic nature of tendons makes them very important in energy storage and
retrieval during motion. Some materials systems, such as metal springs and bones,
behave similarly under tension and compression. Others, such as cartilage and ten-
dons, do not. (Why?)

Nomaterial is perfectly harmonic.Mostmaterials deviate fromperfectly harmonic
behavior for large applied forces and large deformations. Amaterial can deviate from
a harmonic oscillator dependence with the deformation depending nonlinearly on
force or stress, and yet this deformation can still be reversible. This means that the
material returns to its initial state when the stress is removed both in the linear and
nonlinear parts of this elastic regime or region (see Fig. 4.1). For even larger stresses,
the material is no longer elastic because it undergoes plastic deformation, which is
irreversible. This means that the material never returns to the same size or shape
when the stress is removed. For even larger stresses, there is fracture. One glaring
example is the fracture of bones.

Whereas elastic behavior is independent of history and enables total recovery of
stored energy, this is not so in the opposite extreme of viscous behavior, for which
the response depends on the history of applied stresses and no energy is recoverable.
Viscous materials dissipate energy; friction is one manifestation of viscous behavior.
Most materials have properties that are in part elastic and in part viscous, and as such
are viscoelastic. We will examine models describing such viscoelasticity.

We will need to distinguish between the intensive and extensive properties of the
body component (or any other object). Let us say we were to examine a 100cm3 ball
of solid iron that has a 787g mass. Obviously, the iron ball has a mass density of
787g/100cm3 = 7.87g/cm3. This property per unit volume is an intensive property.

http://dx.doi.org/10.1007/978-3-319-23932-3_5
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Fig. 4.1 General
stress—strain relationship.
For more detail, see Fig. 4.15

It does not depend on the size or shape of the ball and applies to any object composed
of this type of iron. An extensive property of this ball is that it has a mass of 787g;
another is its 100cm3 volume. Such extensive properties depend on the intensive
property of the object and the size and shape of the object.

Why do some people’s bones break more readily than others? There are several
reasons: (a) They could have different intensive properties. For example, they could
be more porous and concomitantly have lower damage thresholds—such as for those
with osteoporosis, which is common in older people who have lost much calcium.
(b) They could have different extensive properties, such as thinner bones. Part of
this is clearly genetic in origin, but some is developmental. Bones become thicker
in children who are physically active, and who are consequently applying loads to
them while they are growing [30, 41, 42]. In fact, the bones in the arm wielding the
tennis racket can be ∼30% thicker than those in the other arm in adults who played
tennis as youngsters [35]. (c) They could have bad luck. Reason (a) is related to why
body materials are complex. They are composite materials, composed of different
types of materials on a microscopic basis, that depend on life experiences. Bone is a
composite composed of calcium-based inorganic matter and organic matter.

We have already seen the implications of several of these mechanical properties.
In analyzing running in Chap.3 we saw that about a third of the kinetic energy lost
each time the foot hits the ground goes into stretching the Achilles tendon, and that
most of this energy is recoverable (which is consistent with nearly elastic behavior).
In modeling throwing a ball, we neglected any friction about the elbow joint during
the throwing motion. This followed our discussion of the very low coefficient of
friction in synovial joints. In our discussion of collisions, we saw that the tibia can
break if we jump stiff-legged from a height of only 1 m (which is fracture). Our
model of throwing a ball used the force generated by the biceps brachii (which is an
active element).

http://dx.doi.org/10.1007/978-3-319-23932-3_3
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Interesting references for these materials properties include [6, 8, 9, 22, 27, 31,
45, 47, 56, 57, 59, 61]. Reference [64] examines quite extensively thematerials of the
body and materials used in medicine. Mechanical properties are given in [1, 17, 79].

4.1 Material Components of the Body

We will briefly characterize some of the major structural components of the body:
bones, and several soft materials, such as ligaments, tendons, and cartilage, and then
analyze their mechanical properties. More generally, there are four categories of
tissues:

(1) Epithelial tissue covers the body and lines organs or secretes hormones. It has
closely packed cells, little intercellular material, nerves, and no blood vessels (and
so it is avascular).

(2)Connective tissue includes bone, cartilage, dense connective tissue (such as lig-
aments and tendons), loose connective tissue—such as “fat”—and blood and lymph
vascular tissue.Most connective tissue has nerves and scattered cells in a background
called a matrix. There are many blood vessels in bone and at the periphery of the
menisci—and so they are highly vascularized, but tendons, ligaments, and (the bulk
of) cartilage are not. The matrix consists of fibers and ground substances. The fibers
include collagen fibers (made of the protein collagen) that are tough and flexible;
elastic fibers (made of the protein elastin) that are strong and stretchable; and retic-
ular, web-like fibers. The ground substance includes cell adhesion proteins to hold
the tissue together and proteoglycans to provide firmness.

Epithelial membranes consist of epithelial and connective tissue. These line the
body (skin (cutaneous membrane)), internal organs ( serous membranes of the heart
(pericardium), lungs ( pleura), and abdominal structures (peritoneum)), cavities that
open to the outside world (mucous membranes of the nasal cavity, and the respi-
ratory, gastrointestinal, and urogenital tracts), and cavities at bone joints (synovial
membranes).

(3) Nervous tissue, for body control, consists of neurons to transmit electrical
signals and neuroglia (or glial cells) to support the neurons, by insulating them or
anchoring them to blood vessels.

(4)Muscle tissue controlsmovement, and includes passive components (such as in
the connective tissue) and active, motor-like components. Its structure and properties
will be detailed in Chap.5.

The different fractions of the common building blocks in these components are
shown in Fig. 4.2.

http://dx.doi.org/10.1007/978-3-319-23932-3_5
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Fig. 4.2 Typical composition of several humanmusculoskeletal structural components by fractional
total and dry weight. (Based on [4])

4.1.1 Bone

Bones provide a structural framework to attachmuscles and organs, enablemovement
through the attachment of muscles, provide physical protection of organs (such as
the skull for the brain and the rib cage for the lungs), store minerals (calcium and
phosphorus) and some fats (in the yellow marrow), and produce red blood cells
(in the red marrow). The stiff nature of bone clearly enables it to form a semirigid
framework, enable motion (because how could muscles do their job with flexible
bones?), and provide organ protection. We will see it also means that large bones can
serve these functions and still be hollow and filled with the soft marrow. There are
long bones, as in the arms and legs; short cube-like bones; flat bones, as in the skull
and ribs; and irregularly shaped bones, as in the pelvis and vertebrae.

Bone is a complex compositematerial, with living and nonlivingmatter. The living
matter includes the cells osteoblasts and osteoclasts, which, respectively, make new
bone and resorb (erode) existing bone, and osteocytes, which are former osteoblasts
buried in bone they have made. Bone experiences net growth during childhood (with
osteoblasts outperforming osteoclasts), steady state during most of adulthood (with
the effects of osteoblasts and osteoclasts balancing each other), and net decrease
in older age (with osteoclasts outperforming osteoblasts), leading to osteoporosis
[71]. Excluding water, the nonliving matter of bone is 40% by weight (60% by
volume) collagen and 60% by weight (40% by volume) calcium hydroxyappatite
(Ca10(PO4)6(OH)2). The∼5 nm×5 nm×40nm rod or plate crystals with hexagonal
symmetry of the ceramic-like calcium hydroxyappatite are bound by the elastomer-
like collagen. The inorganic ceramic component gives compact bone its large strength
(a large elastic constant Y ) and a large ultimate compressive stress (UCS). The
collagen component makes bone much more flexible than a ceramic and much more
stable under tension and bending. If you let a turkey leg sit for 24h in 1M HCl
it becomes very flexible because the ceramic crystals have been dissolved and all
that remains is a collagen structure [10]. About 1% of the organic component is



252 4 Mechanical Properties of the Body

proteoglycans (mucopolysaccharides). About 25% of the volume of bone is water,
∼60% of which is bound to the collagen. Spongy (or trabecular) bone has voids with
lateral dimensions of 50–500μm.

Figure4.3a shows the structure of a typical long bone, such as the femur. It has
a long tubular shaft, the diaphysis (die-a’-phi-sus), which is a relatively thin shell
of compact, cortical, or dense bone for strength. We will see later in this chapter
that this type of hollow design maintains much of the strength of the corresponding
solid structure, but with much less weight. At either end, the shaft broadens to form
the epiphyses (e-pi-fi-sees’), where there is an overlayer of articular cartilage for
lubrication and inside the bone, beneath the compact bone, is trabecular, cancellous,
or spongy bone, which is a porous mesh of trabeculae (tra-bic’-you-lee) that can
absorb shock. This porous bone is also found in the bones in the spinal column,
where it provides some structural support and absorbs shock. Figure4.3b shows

Fig. 4.3 Structure of a long bone, as exemplified by the femur, with a a schematic of the frontal
section, b photo of the proximal epiphysis, and c schematic of the cross-section of the diaphysis.
(b) is a photograph of a coronal section of the upper end of the femur of a 31-year-old male. The cut
passes through the head, neck, greater trochanter, and part of the shaft, and is off-center between
the middle and posterior thirds. The uniform sections are compact bone, while the meshed regions
are trabecular bone. (From [75] (for (a), (c)) and [77] (for (b)))
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that the layer of cortical bone in the shaft is thick and it becomes relatively very thin
at the proximal end, where it surrounds the trabecular bone. There is bone marrow in
the hollow shaft, the diaphysis. In short and irregular bones, spongy bone is encircled
by a thin layer of compact bone, while in flat bones it is sandwiched by it.

4.1.2 Ligaments and Tendons

Ligaments and tendons are dense connective tissue with a dense network of fibers,
with few cells and little ground substance. Ligaments are tough bands of fibrous
connective tissue. They are 55–65% water and 35–45% dry matter, which consists
of 70–80% collagen (mostly type I), 10–15% elastin, and a small amount, 1–3%, of
proteoglycans. The collagen (Fig. 4.4) gives ligaments their high tensile strength. The
collagen helices assemble into microfibrils (4nm in diameter), which assemble into
subfrils (20nm in diameter), which assemble into fibrils (50–500nm in diameter),
and then into collagen fibers (100–300μm in diameter) with fibroblast cells that
synthesize the collagen.

The dry weight of tendons is 75–85% collagen (95% type I and 5% type III or V),
<3% elastin, and 1–2% proteoglycans. The structural hierarchy (Fig. 4.5) is like that
of ligaments except they are arranged into packets called fascicles. Also, the bundles
of collagen fibers are more parallel in tendons than in ligaments, as seen in Fig.4.6.

In contrast, the dry matter of skin is 56–70% collagen (mostly type I), 5–10%
elastin, and 2–4% proteoglycans.

In each of these soft materials, the collagen gives it tensile strength, while the
elastin gives it elasticity, which is more important in ligaments than in tendons.

Fig. 4.4 Structure of collagen in fibers and bundles in tendons and ligaments, with ordered arrange-
ment of collagenmolecules in themicrostructure. See Fig. 4.5 formore details about structure. (From
[72])
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Fig. 4.5 Hierarchical structure of tendons. (Based on [4, 37])

(a) Tendon (b) Ligament

Fig. 4.6 Collagen fibers are (a) parallel in a tendon and (b) nearly parallel in a ligament. (Based
on [58])

4.1.3 Cartilage

There are three types of cartilage:Hyaline (high’-uh-lun) cartilage, themost common
in adults, is found in the ventral ends of ribs and covering the joint surfaces of bones.
Elastic cartilage is more flexible, and is found in the external ear and eustachian
tubes. Fibrocartilage occurs in the intervertebral disks. Cartilage that lines the bones
in synovial joints (1–6mm thick) is also called articular cartilage; it serves as a
self-renewing, well-lubricated load bearing surface with wear prevention. It is most
often hyaline cartilage, except in joints, such as the knee (themenisci), which contain
fibrocartilaginous disks.

Articular cartilage is not meant to serve as a shock absorber to cushion forces
or slow joint rotation [45], because it is so thin that it can absorb very little energy
even though it is less stiff than cortical bone. In fact, it absorbs much less energy
than muscles resisting joint rotation (eccentric contractions, Chap.5) or the bones on
either side of the joint (see Problem4.12). About 30% of cartilage by mass is a solid
matrix of collagen (40–70% of the drymass,∼80% type II collagen and several other
types: V, VI, IX, X, and XI) and proteoglycan (15–40% of the dry mass) and 70%
is water and inorganic salts (as seen the structure in Fig. 4.7). Chondrocyte cells that
manufacture the cartilage organic material comprise less than 5–10% of the volume.
Cartilage is viscoelastic because it is a very flexible, porous material (50Å voids)
with voids that are filled with water. The water dissipates energy as it flows through
the voids under compression.

http://dx.doi.org/10.1007/978-3-319-23932-3_5
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Fig. 4.7 Structure of articular cartilage, showing its inhomogeneity and solid—fluid constitution.
The inset shows the local molecular organization of cartilage. (From [34])

In tension the collagenof the solid phase carriesmost of the load,while in compres-
sion both the solid and liquid phases carry the load. The viscoelasticity of cartilage
is controlled by the exudation of the fluid through the pores in this biphasic material
that is responsible for the lubrication of synovial joints.

4.2 Elastic Properties

4.2.1 Basic Stress–Strain Relationships

In the harmonic regime, elastic materials are modeled as perfect springs obeying
Hooke’s Law. This is usually expressed as

F = −kx, (4.1)

where F is the force felt by an object attached to a spring, with spring constant k,
when the spring is extended a distance x . When the spring is extended a distance x ,
say to the right, the attached body feels a restoring force kx to the left (Fig. 4.8).

In examining such Hookean materials we will need to alter this viewpoint a bit.
There is a length of spring or material for which there is no restoring force. We
will call this equilibrium length x0. In (4.1), x is implicitly the deviation from this
equilibrium length, the deformation. For reasons that will become clear soon, we
prefer to refer x to this equilibrium length and so

F = −k(x − x0). (4.2)

Also, in studying problems with springs, we usually examine the effect of the
spring forces on other masses. Here we are concerned with the effect of other forces
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Fig. 4.8 Spring model of elastic materials, a relaxed, b under tension, c under compression. The
text calls the material length L instead of x

Fig. 4.9 Cylinder of relaxed length L0 a under tension and b under compression

on materials modeled as springs. Therefore we consider the force applied to the
spring-like object, Fapplied, which is the negative of the above force F felt by the
object attached to the spring, and is

Fapplied = k(x − x0) = k(L − L0). (4.3)

We have also changed notation so that length of the material is L and its relaxed
length is L0.

When L = L0 the material is relaxed. When there is a positive Fapplied (Figs. 4.8b
and 4.9a), the material is under tension and L > L0. When there is a negative Fapplied

(Figs. 4.8c and 4.9b), the material is under compression and L < L0.
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Equation (4.3) represents the extensive properties of the material. While this is
very important, we first want to examine the intensive properties of the material.
If the object has a cross-sectional area A and length L , we can rewrite (4.3) as

Fapplied

A
= kL0

A

L − L0

L0
. (4.4)

Each fraction represents an intensive parameter. The applied force/area, Fapplied/A,
is called the stress σ. The fractional increase in length, (L − L0)/L0, is called the
strain (or the engineering strain) ε. L − L0 is the elongation. The normalized spring
constant, kL0/A, is called either Young’s modulus or the elastic modulus and is
represented by Y (or E). This modulus is a fundamental intensive property of the
material. Consequently,

σ = Y ε. (4.5)

This linear constitutive relationship describing this material is valid only for small
strains. It is usually valid for |ε| � 1, but the range of validity really depends on
the type of material. We have ignored any change in cross-sectional area. There is
usually a change in A with a change in L (see below), which we will usually ignore
here.

As seen in Fig. 4.8, tensile stress means σ > 0 and leads to a tensile strain ε > 0.
A compressive stress means σ < 0 and leads to a compressive strain ε < 0. For such
elastic materials in the proportional (or harmonic or Hookean) regime the stress–
strain relation is linear, as is seen in Fig. 4.1. The units of stress σ and modulus Y
are both those of force/area, such as N/m2 (= 1Pa) or the more convenient unit of
N/mm2 (= 1MPa); we will usually use these last two equivalent units. Strain, ε, is
unitless. Remember from Table2.6 that 1N/mm2 = 106 N/m2 = 1MPa = 145psi.

Fig. 4.10 Schematic of various loading modes. (Based on [58])

http://dx.doi.org/10.1007/978-3-319-23932-3_2
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4.2.2 Other Stress–Strain Relations

In addition to these linear relations between stress and strain, there are other types
of deformations (Fig. 4.10). Figure4.11a shows the geometry of shear deformations
with force F and shear stress τ = F/A. (τ is not torque here.) The response is the
shear strain γ = tan θ, and for small deviations γ ≈ θ. The shear stress and strain
are related by

τ = Gγ, (4.6)

where G is the shear modulus. This shear deformation is related to the torsion of the
top of a cylinder, with the bottom fixed, as seen in Fig. 4.11b, where the torsion T is
related to the deformation angle φ.

Let us consider the deformation of a cylinder with the long axis along the z-axis.
We have already called the axial strain response in the z direction ε, but because
stresses lead to strain deformations in different directions, we could be more specific
(for the moment) and call it εz . We assumed earlier that the cross-sectional area of
such a cylinder does not change under tension or compression, but it does to a certain
extent. We will call the fractional strains in these lateral x and y directions—the
lateral or transverse strains—εx and εy , respectively. (Inmore advanced discussions,
these three x , y, and z components of strain are really referred to as εxx , εyy , and
εzz .) For the linear deformation described above, symmetry implies that εx = εy . For
a given material there is a relationship between these longitudinal and lateral strains
provided by Poisson’s ratio

υ = −εx

εz
. (4.7)

For isotropic materials, the range of possible υ is −1 < υ < 0.5, although
materials with negative υ are not found in nature. For anisotropic materials, such
as many materials in the body, υ can exceed 0.5. For metals and many engineering
materials υ = 0.25 − 0.35, but it tends to be higher for biological materials. For
bone, υ ranges from 0.21 to 0.62 [47]. For tissues like those in the brain, υ ∼ 0.5.

After this deformation the new volume is the old one× (1+εx )(1+εy)(1+εz) ≈
1 + εx + εy + εz , when each strain has magnitude � 1 (Fig. 4.12). Using Poisson’s
ratio, the new volume is 1+(1−2υ)εz × the old volume and the fractional change in
the volume is εx + εy + εz = (1− 2υ)εz . For example, with υ = 0.25 this fractional

Fig. 4.11 Shear and torsion
forces. a Shear. b Torsion
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Fig. 4.12 Changes in lateral dimensions during (b) tension and (c) compression, as determined by
Poisson’s ratio, compared to those with no forces applied in (a)

volume change is 0.5εz . If υ = 0.5, there is no volume change even with the change
in shape. Similarly, after deformation the new cross-sectional area is the old one
× (1 + εx )(1 + εy) ≈ 1 + εx + εy = 1 − 2υεz , and the fractional change in area is
εx + εy = −2υεz .

Like Y and G, υ is an intensive property of the material. For isotropic materials
they are interrelated by

Y = 2G(1 + υ). (4.8)

For example, if υ = 0.25, the shear and elastic moduli are related by G = 0.4Y .

4.2.3 Bone Shortening

How much do our bones shorten under compression?Wewill assume that the relation
σ = Y ε is valid until the stress reaches itsmaximum just before fracture occurs,which
is called the ultimate compressive stress (UCS) and which is 170MPa for compact
bone; this is a good approximation for this calculation. Then σ = Y (L − L0)/L0

and the bone shortens by

�L = L − L0 = σL0

Y
(4.9)

and fractionally by

ε = �L

L0
= σ

Y
. (4.10)

How much does the femur shorten when you stand on one foot? With no
stress the femur is L0 = 0.5m = 500mm long. The body weight of 700N
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(70kg) is distributed over the femur cross-sectional area A = 370mm2, so σ =
700N/370mm2 = 2.1N/mm2 = 2.1MPa. The femur shortens by only �L =
(σ/Y )L0 = ((2.1N/mm2)/(179 × 102 N/mm2)) 500mm = 0.06mm. This corre-
sponds to a strain of�L/L0 = σ/Y = (2.1N/mm2)/(179×102 N/mm2) = 0.01%.
In units of microstrain (10−6 mm/mm), this is 100 microstrain (or 100με).

The maximum stress in compression is the UCS. What is the strain at the
UCS (assuming linear behavior)? At the breaking limit the bone shortens by
�L = (UCS/Y )L0, which corresponds to a fractional shortening of �L/L0 =
UCS/Y. The femur shortens by ((170N/mm2)/(179 × 102 N/mm2)) 500mm =
(0.95%) 500mm = 5mm or 0.5cm. This is a fractional decrease of 0.95%∼ 1%,
and a microstrain of 10,000με.

4.2.4 Energy Storage in Elastic Media

There are several essentially equivalent ways to determine the potential energy
stored in elastic materials. From (4.1), in a spring the potential energy (PE) is

PE = −
∫ x

0
F dx ′ =

∫ x

0
kx ′dx ′ = 1

2
kx2. (4.11)

Changing to coordinates relative to the equilibrium position and changing the length
to L gives

PE = 1

2
k(L − L0)

2. (4.12)

Because Y = kL0/A, k = Y A/L0, and ε = (L −L0)/L0 , we see that L −L0 = εL0.
Therefore

PE = 1

2

Y A

L0
(εL0)

2 = 1

2
(Y ε2)(AL0) = 1

2
Y ε2V, (4.13)

where the volume V = AL0. Because σ = Y ε, this can be expressed as

PE = 1

2
σεV = 1

2
Y ε2V = 1

2

σ2

Y
V . (4.14)

The potential energy per unit volume PE/V is an intensive quantity.
This is equivalent to integrating

W =
∫ L

L0

F dL ′ = 1

2
Fapplied(L − L0) = 1

2
k(L − L0)

2 (4.15)
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Fig. 4.13 Potential energy from area under a force–length and b stress–strain curves for a harmonic
system

using Fapplied = k(L − L0) or

W =
∫ L

L0

F dL ′ =
∫ ε

0
(σA) d(ε′L0) = V

∫ ε

0
σ dε′ = 1

2
σεV, (4.16)

where the last integral equals the area under the curve in Fig. 4.13 and can be obtained
by replacing σ by Y ε and integrating to get Y (ε2/2) = σε/2.

Designing Optimal Energy Storage Media

How can we design the best elastic storage medium for the body, such as would be
desired for tendons? We would want (1) to store the maximum amount of potential
energy for a given applied force Fapplied and (2) the medium to withstand as large a
Fapplied as possible.

(1) The stored energy is

PE = 1

2

σ2

Y
V =

(
(Fapplied/A)2

2Y

)
AL0 = F2

applied

2Y

L0

A
, (4.17)

so we would want to maximize the length L0, minimize the cross-sectional area A,
and minimize Y .

(2) However, to withstand a large Fapplied we need to keep σ = Fapplied/A below
the threshold for damage (which for tension is called the ultimate tensile stress, UTS),
so we have a limit for how small we could make A to keep σ � UTS. Also, there
is a limit to how much the element can be lengthened (L − L0) for a large Fapplied,
given its motion requirements, such as that for a tendon. Because L − L0 = εL0,
there are limits on how large both ε and L0 can be. This sets a limit on the length L0

and, because ε = σ/Y , a limit on how small Y can be.
There is a tradeoff in the optimal values of L0, A, and Y set by these two criteria.

We want long and thin tendons with a small Y , but there are limits. In this design
problemwe also have to recognize that the medium, such as a tendon, is not perfectly
harmonic or even elastic; all materials are really viscoelastic.
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Energy Storage in Tendons and Long Bones

Let us return to the example of running in Fig. 3.34 [2]. The force on the
Achilles tendon is 4,700N. With a cross-sectional area of 89mm2, we see that
σ = 4, 500N/89mm2 = 53N/mm2 = 53MPa. Given the maximum stress for
tendons, the UTS, is ∼100N/mm2 = 100MPa, during running the stress in these
tendons is not far from the damage threshold. It is not surprising that the Achilles
tendons of athletes occasionally snap, either partially or totally.

Using the stress–strain relation shown in Fig. 4.14, this stress leads to a strain
of 0.06 = 6%. The length of the Achilles tendon is L0 = 250mm, so this strain
corresponds to the tendon lengthening by 15mm and

PE = 1

2
σεV = 1

2
σεAL0 = 1

2
(53N/mm2)(0.06)(89mm2)(250mm) (4.18)

= 35, 000N-mm = 35N-m = 35 J. (4.19)

This is exactly the amount of energy we stated was being stored in the Achilles
tendon during every step of a run.

How much energy is stored in the bones during this step? Let us examine the
largest bone, the femur. We will use L0 = 0.5m = 500mm and A = 330mm2,
and so V = 165, 000mm3. Also Y = 17, 900MPa = 17,900N/mm2. The upward

Fig. 4.14 Stress–strain (or force–length) for a human big toe flexor tendon, using the instrument
on the left, with a 2-s-long stretch and recoil cycle. (From [2]. Copyright 1992 Columbia University
Press. Reprinted with the permission of the Press)

http://dx.doi.org/10.1007/978-3-319-23932-3_3
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normal force in Fig. 3.34 is 6,400N, which we will assume is transmitted all the way
to the femur. The stress is 6, 400N/330mm2 = 19.4N/mm2 and

PE = 1

2

σ2

Y
V = 1

2

(19.4N/mm2)2

17,900N/mm2 165,000mm3 (4.20)

= 1,730N-mm = 1.73N-m ∼ 2 J. (4.21)

If the same enegry is stored in the tibia and fibula, then at most ∼3–4J is stored in
these long bones, which is a very small fraction of the 100J kinetic energy lost per
step.

Elastic energy recovery from tendons and ligaments may be important in motion,
which means the energy storage is mostly elastic, it can be recovered in phase (which
often means fast enough) to assist the motion, and failures due to stresses at high
loading values and repetitive actions are not attained [66]. Longer tendons, such as
Achilles tendons in the lower limb (∼120mm long), can stretch more and tend to
store more energy than shorter tendons (why?), but recoil and release the energy
slower. These shorter tendons include the shoulder internal rotator muscle tendons
used in throwing (∼58mm) and the patellar tendon (∼48mm). While the shorter
tendons in the shoulder store less energy per tendon, there are many in parallel so
much energy can still be stored in them and in shoulder ligaments, and with faster
release.

4.3 Time-Independent Deviations in Hookean Materials

The Hookean (harmonic, linear) stress–strain relation is valid in tension and com-
pression up to a limiting stress, corresponding to a strain� 1 that varies for different
materials. Figure4.15 shows a more realistic stress–strain relation. There is elastic
Hookean behavior up to the point P, the proportional limit. The slope up to this stress
is constant, the Young’s modulus Y . The higher the Y , the stiffer or the less compliant
the material (Fig. 4.16). At higher stresses, the stress–strain relation is nonlinear. Up
to the elastic limit, denoted by EL, the object returns to its initial length when the
stress is removed and there is no permanent deformation. In the linear and nonlinear
elastic regimes, the stretched bonds relax totally and there is no rearrangement of
atoms after the load is released.

For stresses beyond the elastic limit, there is permanent or plastic deformation
and the length and shape of the object are different after the stress is removed. The
yield point or limit, denoted by YP, is at a stress somewhat higher than the elastic
limit; above it much elongation can occur without much increase in the load. (Some
do not distinguish between the elastic limit and the yield point.) Because it is often
difficult to determine, the yield point is usually estimated by the intersection of the
stress–strain curve with a line parallel to the linear part of the stress–strain curve, but
with an intercept set at a strain of 0.2% (or 0.002). This offset method is illustrated
in the inset in Fig. 4.15. The yield point occurs at the yield stress (or strength), YS.

http://dx.doi.org/10.1007/978-3-319-23932-3_3


264 4 Mechanical Properties of the Body

Fig. 4.15 General stress–strain relationship. The engineering stress is plotted here, which is the
force divided by the initial area; it decreases after the UTS. The true stress, which is the force
divided by the actual area increases after the UTS, due to the necking of the material. The inset
shows the offset method to determine the yield point

Fig. 4.16 Stress–strain curves of different types of materials with different levels of strength,
ductility, and toughness. The engineering stress is plotted here. Strong materials fracture at very
large ultimate tensile (or compressive) stress (UTS or UCS) (in Pa). Brittle materials have a small
ultimate percent elongation (UPE) (unitless) and ductilematerials have a largeUPE.Toughmaterials
can absorb much energy (when work is done on them) before they fracture, and so have a large
work of fracture WF (in J/m2) or toughness, which is the shaded region under the stress-strain curve
up to the point of fracture. Stiffer or less elastic materials have a larger Young’s modulus Y (in Pa)
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For tension, the material remains intact for larger stresses until the ultimate tensile
stress (UTS), which is also called the tensile strength (TS) or, less commonly, the
tensile breaking strength (TBS). The larger the breaking strength, the stronger is the
material. Application of this stress leads to fracture at point F, which occurs at a
strain called the ultimate strain or the ultimate percent elongation (UPE).

In Figs. 4.15 and 4.16, the actual type of stress being plotted is called the engi-
neering stress. It is the force divided by the initial area, which is the area before
any force is applied. Past the UTS, the engineering stress decreases as the material
becomes narrower as it is pulled apart and the actual area becomes progressively
smaller than this initial area, which is called “necking”. (This narrowing is much,
much more than that expected from the lateral strain, from Poisson’s ratio.) The true
stress, which is the force divided by the actual area, increases after the UTS, due to
this necking.

Figure4.17 shows that these stress–strain relations look qualitatively different for
ceramics, metals, and elastomers because of their very different microscopic struc-
tures. Ceramics have a linear stress–strain relation with large slope Y . The fracture
point appears only a little into the nonlinear elastic regime, and for smaller values
of strain <0.1. To first order, bone (Fig. 4.18) is like a ceramic. (It is actually more
complicated than that, as we will see.) Metals have a smaller Y , a larger nonelastic
and plastic regime, and a larger UPE ∼50 (in %). Elastomers (rubber, polymers)
distort greatly even with small stresses because in this regime long, tangled chain
molecules are straightened out at low stress in this toe region (the region of positive
curvature at low strain, as in Fig. 4.25 below). The stress–strain curve is not linear.We
will examine this again later. It takes much larger stresses to increase strain further
after all of the chains have been straightened, because now bonds must be stretched.
These materials have a very large UPE, typically >1. Blood vessels are elastomers.

There are striking differences in the plastic deformation regimes of the curves in
Fig. 4.17. Ductile materials, such as modeling clay, chewing gum, plastic, and most
metals, have an extensive plastic deformation phase (metals, elastomers, Fig. 4.17).
Nonductile or brittle materials, such as glass, ceramics (stone, brick, concrete, pot-
tery), cast iron, bone, and teeth, have a limited or essentially no plastic phase (ceram-
ics, Fig. 4.17). They break easily when they are dropped; cracks easily propagate in
them. The bonding in ductile materials allows layers of atoms to slip or shear past

Fig. 4.17 Stress–strain
curves for different types of
materials under tension
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Fig. 4.18 Stress–strain
curves under tension for wet
limb bones of persons
between 20 and 39 years of
age. The closed circles are
the fracture points. (From
[6], based on [79])

each other, as in the bonding of metals.When thin rods of ductile materials are pulled
at either end, they narrow in the center, forming a neck. In nonductile materials the
covalent bonding is directional and does not permit this type of distortion. Typically,
brittle materials have a small UPE and ductile materials have a large UPE.

Figures4.15, 4.17, and 4.18 show the effects of tension.Under compression ε < 0,
and the stress–strain slope is the same Y for many conventional materials. For bio-
logical materials, like cartilage, they can be very different because of their com-
plex nature. In cartilage, tension is resisted by the solid phase, while compression
is resisted by the solid and liquid components. For ligaments and tendons, there is
resistance to tension, but not to compression. For larger stresses the dependence is
different even for many common nonbiological materials, and fracture occurs at the
ultimate compressive stress (UCS), also called the compressive strength (CS) or the
compressive breaking strength (CBS), which is different from the UTS in general
(Table4.1).

Table4.1 gives the Y , UCS, and UTS for several types of materials. Note the
very wide range of Y . Some ceramic-type materials, such as granite, porcelain, and
concrete, can take much larger stresses in compression than in tension (UCS �
UTS). In others, UCS<UTS. The two types of bones listed have a different porosity
and very different properties. Compact bone, also known as cortical, or dense bone,
has a large Young’s modulus that is comparable to that of other strong materials
(Fig. 4.18). It can withstand more stress in compression than in tension, but unlike
the ceramics it has a fairly large UTS. Trabecular bone, also known as spongy or
cancellous bone, is more porous and has a very small Y , almost as small as that of
rubber (Fig. 4.19a).
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Table 4.1 Mechanical properties of common materials

Material Y (×103 MPa = GPa) UCS (MPa) UTS (MPa)

Hard steel 207 552 827

Rubber 0.0010 – 2.1

Nylon 66 1.2–2.9 – 59–83

Gold 78 – –

Tungsten 411 – –

Granite 51.7 145 4.8

Concrete 16.5 21 2.1

Southern Pine (select structural)a 11 25 19

Southern Pine (No. 2 grade)a 10 20 10

Oak 10.0 59 117

Fused quartz 73 – 69

Diamond 965 – –

Porcelain – 552 55

Alumina (85% dense) 220 1,620 125

Alumina (99.8% dense) 385 2,760 205

Compact bone 17.9 170 120

Trabecular bone 0.076 2.2 –
aStandard and utility Southern Pine can have lower Y and much lower UCS and UTS than these
construction grades. Other types of pine will have different values also
Using data from [10, 29, 31, 74]

Fig. 4.19 Mechanical properties of bone as a function of apparent density. a Stress–strain of
different densities of bones under compression. b UCS of trabecular bone versus bone density.
(Based on (a) [24, 38], and (b) [4, 38])

Typical stress–strain curves for structural materials in the body under tension are
shown in Fig. 4.20. Yamada [79] has published extensive measurements of stress–
strain relations for many components of the human body. Table4.2 lists several
elastic constants determined from these data. Fig. 4.21 shows one series of these
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Fig. 4.20 Typical
stress–strain of cortical and
trabecular bone, cartilage,
ligaments, and tendons under
tensile loading. For some
structural materials, the
stress–strain relations are
very different for different
types of the material, such as
for cartilage. (Based on
[4, 79])

stress–strain relations, for different sections of the small intestine. Note that these
curves are very nonlinear for a given stress, as are many soft human tissues [7, 28,
51]; this is discussed more below.

To first order, bones, teeth, and nails, all hard materials, have similar stress–strain
curves that are ceramic-like. Tendons, cartilage, resting muscle, skin, arteries, and
intestines all have more elastomer-like properties because they have much more
collagen; they are really non-Hookean materials. This is also seen in Fig. 4.20. Each
of these body materials has viscoelastic properties, as we will address below.

Compact bone in different long bones in the human body has slightly differ-
ent properties (Table4.6 below). These properties can be anisotropic (Fig. 4.22,
Table4.3), meaning that the properties are different along different directions. For
example, this is true of bone and of the esophagus and small intestine, which are
composed of very different materials. The small intestine stretches much more eas-
ily in the transverse direction than the longitudinal direction, as seen in Fig. 4.21 [7,
28, 51]. Many biological materials are anisotropic, as are many common materials,
such as wood due it is grain structure. Some materials are fairly isotropic.

Several elastic properties varywith age. These properties also changewith density,
which is a main reason why people with osteoporosis often fracture bones during a
fall. Figure4.19b shows the UCS decreases roughly as the square of bone density.
(These changes with age are, in part, linked to such changes in density and the
thinning of the bones. When your long bones are thicker due to heavy physical
activity in childhood and adolescence, the chance for fracture decreases even with
the loss of density [42]. Exercise that loads the long bones, can slow decreases in bone
porosity and thickness with advancing age [30].) Fig. 4.23 shows that the mechanical
properties of soft tissues, in this case the anterior cruciate ligament (ACL) in the knee,
also depend on age, as well as direction (also see Fig. 4.21.)

Material properties in the body change with time for reasons aside from aging and
injury. The tissue in the cervix softens during pregnancy,with themodulus (measured
at ∼20% strain) being ∼0.1–1MPa before and during the early stages of pregnancy,
to contain the fetus well, and decreasing to ∼1–10kPa at term (beyond 37 weeks of
gestation), to enable expansion and easy delivery [53]. (This modulus is technically
the tangent modulus of elasticity, which is defined later this chapter.)
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Table 4.2 Elastic properties of organs under tension (human, unless otherwise specified)

Organ UTS (MPa) UPE (%) Y (MPa)

Hair (head) 197 40 12,000

Dentin (wet teeth) (compression) 162 4.2 6,000

Femoral compact bone (compression) 162 1.8 10,600

Femoral compact bone 109 1.4 10,600

Tendons (calcaneal = Achilles) 54 9.0 250

Nail 18 14 160

Nerves 13 18 10

Intervertebral disc (compression) 11 32 6.0

Skin (face) 3.8 58 0.3

Vertebrae 3.5 0.8 410

Elastic cartilage (external ear) 3.1 26 4.5

Hyaline cartilage (synovial joints) 2.9 18 24

Intervertebral disc 2.8 57 2.0

Cardiac valves 2.5 15 1.0

Ligaments (cattle) 2.1 130 0.5

Gall bladder (rabbit) 2.1 53 0.05

Umbilical cord 1.5 59 0.7

Vena cava (longitudinal direction) 1.5 100 0.04

Wet spongy bone (vertebrae) 1.2 0.6 200

Coronary arteries 1.1 64 0.1

Large intestine (longitudinal direction) 0.69 117 0.02

Esophagus (longitudinal direction) 0.60 73 0.03

Stomach (longitudinal direction) 0.56 93 0.015

Small intestine (longitudinal direction) 0.56 43 0.2

Skeletal muscle (rectus abdominis) 0.11 61 0.02

Cardiac muscle 0.11 64 0.08

Liver (rabbit) 0.024 46 0.02

The Young’s modulus is given in the low strain limit
Determined using [79]

We have seen that materials in the body are sometimes composed of different
structures (i.e., they are composite materials), are anisotropic, and are sometimes
layered. Moreover, a given material in a given organ or part of the body can also
be very nonuniform. One example is seen in our teeth. Teeth are composed of pulp,
which is mostly surrounded by dentin, which itself is overlayed by enamel. The
enamel is very stiff and hard, and has very nonuniform properties [44]. Near the
surface of the tooth (the occlusal surface), of say the second molar, the Young’s
modulus approaches 120GPa, and it decreases to approximately 55GPa near the
enamel–dentine surface. It is also somewhat larger on the lingual (tongue) side than
the buccal (cheek) side.
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Fig. 4.21 Stress–strain curves for material in different sections of the small intestine of persons
from 20 to 29 years of age, under tension in the longitudinal and transverse directions. The closed
circles are the fracture points. (Based on [79])

Fig. 4.22 Anisotropic properties of cortical bone specimens from a human femoral shaft tested
under tension. Each curve ends at its point of failure. (Based on [23, 24])
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Table 4.3 Mechanical properties of human cortical bone

Young’s modulus, Y (GPa)

Longitudinal 17.4

Transverse 9.6

Bending 14.8

Shear modulus (GPa) 3.51

Poisson’s ratio 0.39

Yield stress (MPa)

Tensile—longitudinal 115

Compressive—longitudinal 182

Compressive—transverse 121

Shear 54

Ultimate stress (MPa)

Tensile—longitudinal 133

Tensile—transverse 51

Compressive—longitudinal 195

Compressive—transverse 133

Shear 69

Bending 208.6

Ultimate strain

Tensile—longitudinal 0.0293

Tensile—transverse 0.0324

Compressive—longitudinal 0.0220

Compressive—transverse 0.0462

Shear 0.33

Bending (0.0178 bovine)

Using data from [45]

Fig. 4.23 Age variation of
the ultimate load (UTS) of
human anterior cruciate
ligament (ACL) as a function
of age and orientation.
(Based on [4, 78])



272 4 Mechanical Properties of the Body

What is the strongest part of the body? If we were to define strength as the largest
UTS, then of the body components in Table4.2 it is not bone and not dentin in the
teeth, but hair. (Of course, if we were to include tooth enamel, which is not in this
table, it would beat out hair for this distinction. It is the hardest biological material
in the body.)

4.3.1 Non-Hookean Materials

Many bodymaterials cannot be modeled as Hookean springs, even for small stresses.
This is typically true for collagenous tissues, such as tendons, skin, mesentery (which
are the folds attaching the intestines to the dorsal abdomen), the sclera, cartilage, and
resting skeletal muscle. Experimentally, for resting muscles and the materials shown
in Fig. 4.21 it is found that for larger strains

dσ

dε
= α(σ + β). (4.22)

This is very different than that for materials such as bone for which σ = Y ε, with a
dσ/dε = Y that is independent of stress. Instead they are characterized by the slope
of the stress-strain curve, dσ/dε, which is called the tangent modulus of elasticity,
which is a function of stress or strain, as in (4.22).

Equation (4.22) can be integrated after bringing the σ and ε terms to opposite sides
of the equation

dσ

σ + β
= α dε (4.23)

ln(σ + β) = αε + γ, (4.24)

where γ is a constant. Exponentiating both sides gives

σ + β = exp(αε) exp(γ) and σ = μ exp(αε) − β, (4.25)

where μ = exp(γ). Because σ(ε = 0) = 0, we see that β = μ and so

σ = μ(exp(αε) − 1). (4.26)

This is illustrated in the passive curves in Fig. 5.21. (See AppendixC for more infor-
mation about this method of solution.)

Sometimes the Lagrangian strain λ = L/L0 = ε + 1 is defined, where L is the
length and L0 is the length with no stress. Equation (4.26) becomes

σ = μ′ exp(αλ) − μ = μ′ exp(αL/L0) − μ, (4.27)

with μ′ = μ exp(−α).

http://dx.doi.org/10.1007/978-3-319-23932-3_5
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Fig. 4.24 Scanning electron micrographs (10,000×) of a unloaded and b loaded collagen fibers
from human knee ligaments, showing them straightening out under the tensile load. (From [39].
Used with permission)

Fig. 4.25 Force–deformation curve for anACL (ligament), showing regimes of clinical test loading,
loads during physiological activity (toe and linear regions), and loads leading to microfailure and
ultimate rupture and complete failure. (Based on [58, 60])

At larger strains this exponential form may not work well. In the neo-Hookean
regime, finite strain, E = 1

2 (λ
2 − 1), is defined, which for small deformations

approaches the small-strain approximation, ε = λ − 1. Soft, neo-Hookean materials
tend to follow a linear relationship between stress and λ2 (or E), and not a linear or
exponential relationship between stress and λ (or ε). This neo-Hookean regime and
other more general ways to define strain are described in Problems4.20–4.22.

Such non-Hookean stress–strain curves are typical for materials with fibers. As
mentioned earlier, there are large strains for small stresses where the tangled fibers
are being aligned (in this toe regime), but much larger stresses are required to achieve
much higher strains where the already-aligned fibers are being stretched (Fig. 4.24).
Try this by stretching yarn. The fibers begin to tear at the UTS, corresponding to the
load seen in Fig. 4.25.
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For tendons (Fig. 4.14) and ligaments (Fig. 4.25) the tangent modulus of elasticity
increases with strain at low strain (in the toe region) and then becomes constant (in
the linear region) until it ruptures (and so, before rupture it is not well described by
(4.22)). For tendons, the linear regime begins when they are stretched ∼2% (range
from 1.5–4%) or stressed to ∼16MPa (5–30MPa), and in the linear regime the
tangent modulus is ∼1.2GPa (0.6–1.7GPa) [80].

We will now return to the deformation of Hookean materials, like bone. We will
revisit the properties of these non-Hookean materials in the discussions of viscoelas-
ticity and muscles.

4.4 Static Equilibrium of Deformable Bodies
(Advanced Topic)

We now examine the deformation of bones under the action of forces in more detail.
We have seen how they can be pulled (tension) and squeezed (compression); now
we will see how they can bend. This analysis will help us understand how bones
fracture when they are bent, such as during slipping and skiing accidents. We will
also learn why long bones, like the femur, are strong even though they are hollow.
As an added benefit, we will derive a scaling law that will help us understand some
aspects of metabolism.

Physics classes usually describe the motion of point objects or more extended
objects that never deform. However, no object is a point and objects do deform. Such
extended objects are treated in great detail inmechanical and civil engineering curric-
ula for obvious reasons. We will examine how such finite bodies bend to understand
bone fracturing better, and will follow the treatment of [6]. The derivations in this
section can be treated as a more advanced topic. They can be skipped and the final
results can be used.

Let us consider the beam of length L shown in Fig. 4.26. It has a constant cross-
section throughout its length; the cross-section need not be rectangular or circular. It
is supported at both ends and a force F is applied to the center at the top as shown.
We expect the beam to bend. For beams composed of most materials, we expect it to

Fig. 4.26 Force diagram of a rectangular beam with a force applied to the middle. (From [6])
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bend to a shape with a top surface that is somewhat cylindrical, and have a circular
arc cross-section in the plane of the paper. If this were a rubber band, we would
expect a more triangular deformation. Because we want to learn about bones, we
anticipate some small degree of bending.

In this two-dimensional problem, in equilibrium
∑

Fx = 0,
∑

Fy = 0, and∑
τz = 0 (2.8) for the entire beam. There are no forces in the x direction. We are

assuming that in the equilibrium bent position, the amount of bending is small, so
nothing interesting is happening in the x direction. The downward force F (which
is the negative y direction) that is applied to the center of the beam is countered by
the forces F/2 at the two supports, as is shown. The total torques on this beam are
zero about any axis.

So far, this is how we treated the statics of rigid bodies in Chap.2. Now let us
examine the static equilibrium for only a part of the beam. As seen in Fig. 4.27, we
consider the right side of the beam, from the right end to a distance x to the left of
this end. The three equilibrium conditions also apply to this section, as well as to
any other section. We can again ignore the x direction because there are no forces in
that direction. For this example, with x < L/2 for now, there is apparently only one
force acting on this piece of the beam, the upward force F/2 at the right support.
This force also causes a torque and so

∑
Fy = 1

2
F and

∑
τz = 1

2
x F. (4.28)

We have chosen the torque axis normal to the page at the left end of this portion of
the beam (at a distance x from the right end). Because this portion of the beam is static,
both termsmust sum to zero. Something is wrong.What?We have excluded the force
on this section from the other part of the beam. These internal forces must be −F/2
to balance the effect of the external force F/2 (Fig. 4.28). This “internal vertical
force,” often called the “internal shear force” or just the “shear force,” supplied at
the border with the other section is similar to the “normal” or “reaction” force felt
by an isolated part of the body, as that on the leg from the hip. There must also be an
internal torque applied by the other part of the beam equal to −x F/2. This “internal
torque” is also called the “internal bending moment” or just the “bending moment.”

For longer sections, with L/2 < x < L , the section feels the upward force at the
right support F/2 and also the applied force −F at the center. Both lead to torques.
Excluding internal forces and torques

Fig. 4.27 External forces on a section of a beam. (From [6])

http://dx.doi.org/10.1007/978-3-319-23932-3_2
http://dx.doi.org/10.1007/978-3-319-23932-3_2
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Fig. 4.28 Internal (left) and external (right) forces on an isolated section of the lined portion of
the beam in Fig. 4.27. This is a free-body diagram of this portion. (From [6])

Fig. 4.29 Internal vertical
force for a right-adjusted
section in the beam.
(From [6])

Fig. 4.30 Internal torque for
a right-adjusted section in
the beam. (From [6])

Fig. 4.31 Bending of a
loaded beam. (From [6])

∑
Fy = −1

2
F and

∑
τz = 1

2
(L − x)F (4.29)

and so the internal force is F/2 and the internal torque is−(L − x)F/2. The internal
vertical force and torque are plotted versus x in Figs. 4.29 and 4.30.When we include
these internal forces and torques, each portion of the beam is in static equilibrium.
For now assume that x < L/2; extension to L/2 < x < L is straightforward.

How do the internal torques arise? With the applied force, the beam deforms to
that in Fig. 4.31 (in which the deformation is greatly exaggerated for a long bone).
Clearly, the top portion is compressed and has a length<L , while the bottom portion
is under tension and has a length >L . (This should become clearer if you take a
spring or SlinkyTM and bend it into a circular arc.) Somewhere in the middle (in the
y direction) there is no compression or tension, so the length in this neutral axis is L .
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Fig. 4.32 Internal stresses in
a bent beam. (From [6])

Fig. 4.33 Torques in a bent
beam. (From [6])

(The neutral axis is in the center (in the y direction) for symmetrical cross-sections.)
For the top to be compressed there must be an internal force at the top in the +x
direction pushing into the section from the other portion (Fig. 4.32). Similarly, for
the bottom to be under tension there must be an internal force at the bottom in the
−x direction, pulling into the section from the other portion. As shown in this figure,
there is a smooth variation of this force from the top (called point A) to the bottom
(point C), with it being zero at the neutral axis (point O). Clearly, the sum of these
internal forces in the x direction must be zero.

Each of these internal forces causes a torque in the z direction,−FI yI , and each of
these leads to a clockwise, or negative, torque about point O (Fig. 4.33). With forces
to the right called positive, clearly FA > 0 and FC < 0, and with yA > 0 (measured
upward from the neutral axis) and yC < 0, we find that the torque contributions from
points A and C, −FAyA and −FCyC, are equal in symmetrical situations. We can
sum all of these internal torques to arrive at τinternal, and then

∑
τz = τinternal + 1

2
Fx = 0 (4.30)

for static equilibrium.
What is the total internal torque? Consider a beam with arbitrary, but constant,

cross-section, as shown in Fig. 4.34. The distance up from the neutral axis (with
point O’) is y, and there is a cross-section element with area dA at this position;
dA = w(y)dy, where w(y) is the width at y. There is a force acting on this area
element at height y, which is

dF(y) = σ(y)dA(y). (4.31)
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Fig. 4.34 Stress in a bent
beam versus position. An
area element (for y < 0) is
shown as a shaded region,
with area dA = w(y)dy for
width w(y). (From [6])

For each element there is a torque

− y dF = −yσ(y)dA(y). (4.32)

So the total internal torque is

τinternal = −
∫ yA

yB

yσ(y)dA(y) = −1

2
Fx, (4.33)

where yA = D′ and yB = −D in Fig. 4.34. (The dA element includes the dy term.)
What is the distribution of σ? To first order, the beam deforms to a circular arc

(Figs. 4.35 and 4.36) of radius R and angle α. At the midline neutral axis, where
y = 0, we see that L = Rα for α � 1 and so α = L/R. If the beam has a thickness
in the y direction of d and the beam is symmetrical, then the top of the beam is
(R − d/2)α long and the bottom is (R + d/2)α long. In general,

L(y) = (R − y)α = (R − y)
L

R
=

(
1 − y

R

)
L , (4.34)

so the elongation is L(y) − L = −(y/R)L and the strain is

ε(y) = − y

R
, (4.35)

where 1/R is the curvature.
In the harmonic region,withσ = Y ε, the stresswould be expected to be−Y (y/R).

Given the direction of the forces shown in Fig. 4.34, the stress is defined to be positive
for positive y, so

σ(y) = Y
y

R
. (4.36)
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Fig. 4.35 Geometry of a bent beam. (From [6])

Fig. 4.36 Geometry of a
bent beam in more detail.
(From [6])

4.4.1 Bending of a Beam (or Bone)

The total internal torque is

τinternal = −
∫ yA

yB

y
(

Y
y

R

)
dA(y) = −Y

R

∫ yA

yB

y2dA(y) = −1

2
Fx, (4.37)

where yA = d/2 and yB = −d/2 for the symmetrical situation.
The area moment of inertia is defined as

IA =
∫ yA

yB

y2dA(y). (4.38)

(This parameter is very different than the moment of inertia defined in (3.24). This
one sums the squares of the distances froma plane,while the other andmore usual one
sums the squares of the distances from an axis.) Using this moment and the definition
of the bending moment MB due to applied forces (MB = −Fx/2 at equilibrium),
(4.38) is

http://dx.doi.org/10.1007/978-3-319-23932-3_3
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MB = −Y

R
IA (4.39)

and the magnitude of the curvature is

1

|R| = |MB|
Y IA

. (4.40)

Equations (4.39) and (4.40) interrelate four quantities (1) the applied forces,
through MB; (2) the intensive materials properties, through Y ; (3) the physical defor-
mation (response) of the beam due to the applied forces, through R; and (4) the shape
of the object, through IA.

For a given MB and Y , when the area moment of inertia IA is large there is
little bending, while when IA is small there is much bending. For example, the area
moment of inertia for a rectangle of height h and width w is

IA =
∫ h/2

−h/2
y2(wdy) = 1

12
wh3, (4.41)

where dA = (w)dy. Consider a 2× 6cm rectangle arranged vertically (see Fig. 4.37)
withw = 2cm and h = 6cm. It has an IA = 2cm× (6 cm)3/12 = 36cm4. If this same
rectangle were horizontal, thenw = 6cm and h = 2cm, and IA = 6cm× (2 cm)3/12
= 4cm4. For the same MB and Y , the horizontal beam would bend 9× more. Try this
with a yardstick!

The moment IA is larger when the mass is distributed far from the central action,
and there is less bending for a givenbendingmomentwhen this occurs. This illustrates
why “I beams” are used in construction instead of solid beams with the same overall
rectangular cross-section (Fig. 4.38). The mass far from the neutral axis provides the
resistance to bending, which is proportional to IA, and the lack of material near the
neutral axis lowers the weight of the beam.

Fig. 4.37 Geometry for
calculating the area moment
of inertia for a rectangular
beam. The same calculation
can be used for the very
different rectangular beam,
with h < w. (From [6])
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Fig. 4.38 An I-beam. (From [6])

Fig. 4.39 a A solid circular beam; b determining the area moment of inertia for a solid circular
cylinder beam; c a hollow circular beam

Why Long Bones Are Hollow

We now see why the long bones in the body can be hollow with much loss of weight
and little loss of stiffness. The mass far from the neutral axis provides resistance to
bending, while that near the neutral axis contributes little. Such hollow bones have
sufficient resistance to bending, as well as larger resistance to bending per unit mass
than do solid bones.

The area moment of inertia for a solid circular beam of radius a (Fig. 4.39a) is
given from (4.38) IA,solid = ∫ a

−a y2dA(y) . Using Fig. 4.39b, we see that y = a sin θ,
dy = a cos θ dθ, and w(y) = 2a cos θ, so dA = 2a2 cos2 θ dθ. Therefore

IA,solid =
∫ π/2

−π/2
(a sin θ)2(2a2 cos2 θ dθ) = 2a4

∫ π/2

−π/2
sin2 θ cos2 θ dθ = 1

4
πa4,

(4.42)

because sin2 θ cos2 θ = sin2 θ(1−sin2 θ) = sin2 θ−sin4 θ, and
∫ π/2
−π/2 sin

2 θ dθ = π/2
and

∫ π/2
−π/2 sin

4 θ dθ = 3π/8. The mass of the solid circular beam with length L and
mass per unit volume (mass density) ρ is Msolid = ρπa2L . Using (4.42), it is clear
that for a hollow circular beam with hollow radius a1 and total radius a2 (Fig. 4.39c),

IA,hollow = π(a4
2 − a4

1)

4
(4.43)

and mhollow = ρπ(a4
2 − a4

1)L . Table4.4 shows that only 6% of the bending stiffness
is lost with a1/a2 = 0.5, even though there is a 25% decrease in mass. For a beam
of radius a and thin wall of thickness w � a (a2 = a, a1 = a − w), we find that
IA,hollow = πa3w, mhollow = 2ρπawL , and IA,hollow/mhollow = a2/2ρL . While the
resistance to bending per unit mass increases as the beam (or bone) becomes more
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Table 4.4 Comparison of area moments of inertia and masses of hollow and solid circular beams

a1/a2 IA,hollow/IA,solid mhollow/msolid (IA,hollow/mhollow)/(IA,solid/msolid)

0 1.0 1.0 1.0

0.2 0.998 0.96 1.04

0.4 0.974 0.84 1.16

0.5 0.937 0.75 1.25

0.6 0.870 0.64 1.36

0.8 0.590 0.36 1.64

0.9 0.344 0.19 1.81

Fig. 4.40 Bending of a cantilever beam loaded at one end. (From [6])

Fig. 4.41 Bending moment
at end point x along the axis
for the loaded cantilever
beam. (From [6])

and more hollow, there is a limit to how much smaller IA can become with smaller
w before the beam can bend too much; it can also buckle (see below).

Bone Bending and Scaling Relationships

Let us consider a cantilever of length L that is firmly attached at the left and initially
free at the right side (Fig. 4.40). A force F is applied downward at this free end. How
much does this end bend down? For every section of length x (from the right), there
is an applied moment MB(x) = F(L − x) (Figs. 4.41 and 4.42). Locally, at each x
there is a curvature 1/R, given by (4.40). The local curvature of any curve (in this
case the beam) can be expressed by d2y/dx2 = −1/R(x) and so

d2y

dx2
= − F(L − x)

Y IA
. (4.44)

At the wall (x = 0) the position is fixed, so y = 0 and dy/dx = 0 at x = 0.
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Fig. 4.42 Moment versus x
for the loaded cantilever
beam. (From [6])

Integrating (4.44) twice and applying these conditions gives the downward deflec-
tion at each x

y(x) = − F

6Y IA
((L − x)3 + L2(3x − L)). (4.45)

(See AppendixC for more information about the solution.) At the end

y(L) = − F L3

3Y IA
. (4.46)

We will use this relation in the discussion about scaling in metabolism in Chap.6.

4.5 Time-Dependent Deviations from Elastic Behavior:
Viscoelasticity

So far we have asked how large of a force is needed to create a given strain or to
break a bone. We have never asked whether it makes a difference if this force were
applied quickly or slowly. (If we were to ask this, we would really need to know
if it were applied fast or slow relative to a defined time scale.) The responses of
most materials inside or outside the body depend on these temporal dependences
and on history, to some degree. This very important type of mechanical behavior is
called viscoelasticity. Biological liquids and solids are usually viscoelastic, and this
includes tendons, ligaments, cartilage, bone, and mucous. We will see how to model
the viscoelasticity of body materials, and how it affects us—such as in fractures and
collisions [22, 27].

Perfectly harmonic elastic behavior is modeled by a spring (Fig. 4.43a), with

F(t) = kx(t), (4.47)

where F is now the applied force and x is the response, which is the displacement
of the end of the spring. k is the spring constant. The force and displacement depend
on the current state at the current time t and are independent of history.

http://dx.doi.org/10.1007/978-3-319-23932-3_6
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(a)

(b)

Fig. 4.43 a Ideal (or perfect) spring and b ideal (or perfect) dashpot. These are the two basic
building blocks used in modeling the mechanical response of materials

Perfectly viscous behavior is modeled by a dashpot (Fig. 4.43b), with

F(t) = cv(t) = c
dx(t)

dt
, (4.48)

where the response depends on the speed. c is a constant that describes damping due
to viscosity. (In the biomedical engineering community this is sometimes called η.)
An idealized dashpot is a piston moving in a cylinder, impeded by its movement in a
viscous fluid. The displacement of the piston in the dashpot depends on its history!
(The damping motion of a screen door closer can be modelled as a dashpot.) This
viscosity damping constant c describes the effects of viscosity for this macroscopic
model and relates the force in the dashpot model to the speed of the piston in the
viscous medium. It is related to, but is different from, the coefficient of viscosity
η described in Chap.7, which connects shear stress and the shear rate in a viscous
fluid, as in (7.22) and (7.33).

We will combine these ideal springs and dashpots to arrive at models of realistic
viscoelasticmaterials and see how they respond to stimuli that varywith time.We can
examine the extensive properties of applied forces and deformations of the material
or the corresponding intensive properties of stress and strain.

There are three interrelated manifestations of viscoelasticity (Fig. 4.44):
1. Creep. When a stress (or force) is applied and maintained, there is a strain (or

deformation) in the medium that increases with time.
2. Stress relaxation. When a strain (or deformation) is applied and maintained, a

stress (or force) is felt by the medium immediately, and it then relaxes in time.
3. Hysteresis. When stresses are applied and then released (forces loaded and

unloaded), the stress–strain cycles are not reversible. Some, but not all, of the work
done in the loading processes (during which the stress is increased) is recoverable in
unloading (during which the stress is decreased).

Each of these effects can be observed and characterized by our models for step
function, impulse, and cyclic loading (which are shown in the Fig. 4.45). There are
also outcomes other than those predicted by our models—such as ordinary and stress
fractures—from long-term static loading and many cycles of loading.

One feature of viscoelasticity is that materials behave differently over different
time scales. This is seen for one well-known viscoelastic material, Silly PuttyTM.
When you throw silly putty against a wall, it bounces back like a ball with Young’s

http://dx.doi.org/10.1007/978-3-319-23932-3_7
http://dx.doi.org/10.1007/978-3-319-23932-3_7
http://dx.doi.org/10.1007/978-3-319-23932-3_7
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(a)

(b)

(c)

Fig. 4.44 General examples of a creep, b stress relaxation, and c hysteresis in viscoelastic systems.
In (a) and (b) the stimulus is applied at the timeof the shorter arrow. In (a) the possibility of removing
the stimulus is also shown, at the time of the longer arrow, with the dashed lines. In (c) the recovered
work is the area of the cross-hatched region, while the lost work is the area of the lined region.
(More precisely, this is work per unit volume for stress σ and strain ε and work for force F and
distortion x)

modulus∼1.7×106 N/m2 [15].When you pull it, it stretches like puttywith viscosity
∼8×104 Pa-s. In the first example it behaves elastically. The time scale, the collision
time with the wall, is short, �0.1s. It behaves in a viscous manner in the second
example, because the time scale of pulling on it is long, �0.1s.

Figure4.46 shows the stress–strain curves for bone when it is strained at different
strain rates. When bone is strained slower, it develops less stress for the same applied
strain. Figure4.47 shows when stress is applied at slower rates, there is more strain
for the same applied stress. Hysteresis in bone is shown in Fig. 4.48. Hysteresis and
stress relaxation are shown for ligaments, tendons, and passive muscles in Figs. 4.49
and 4.50. The mechanism and the response of stress relaxation for cartilage are
depicted in Fig. 4.51. This involves the exudation of fluid from the cartilage, which
is tied to the lubrication of synovial joints, as shown in Fig. 3.15. The elastic modulus

http://dx.doi.org/10.1007/978-3-319-23932-3_3
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(a) (b)

(c) (d)

Fig. 4.45 Different types of loading protocols: a step function, b square pulse, and cyclic with
c square pulses, or d sine waves

Fig. 4.46 Stress versus
strain for cortical bone for
different strain rates,
showing increased modulus
and strength with increased
strain rate. (Based on [24,
45, 46])

of cartilage increases from∼1MPa for very slow rates of loading to 500MPa for fast
rates. Some mechanical properties of cartilage are plotted for different strain rates
in Figs. 4.52 and 4.53. The modulus is ∼0.70MPa and Poisson’s ratio = 0.10 for
lateral femoral condyle cartilage.

Before developing models of viscoelastic materials, let us see how the perfect
spring and dashpot components respond to idealized applications of stress and strain.
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Fig. 4.47 Load (stress) versus deformation (strain) for dog tibiae for different loading rates. The
arrow shows the point of failure. At higher loading rates the load and the energy to failure are almost
doubled, where energy is the area under the curve. (Based on [12, 69])

Fig. 4.48 Hysteresis in bone and shifting in the stress–strain curve with repeated loading (to a, b,
c) and unloading. The units of strain are microstrain. (Based on [8, 18])

4.5.1 Perfect Spring

We use (4.47) to determine the response of a perfect spring to a stimulus. If we apply
a force F0 of any level, there will be an “instantaneous” deformation response of
x = F0/k. This creep response is seen in Fig. 4.54a for a step-like application of
force. If we suddenly subject the material to a deformation x0 (or a strain), with a step
function (θ(t), as described below), there is an instantaneous step function response
in the force (or stress) it feels (Fig. 4.54b).

4.5.2 Perfect Dashpot

Equation (4.48) describes the motion of a perfect dashpot with damping constant
c. This characterization is often used to describe friction and other types of energy
relaxation and dissipation. If we immediately apply a constant force F0 at time t = 0,



288 4 Mechanical Properties of the Body

(a) (b) (c)

Fig. 4.49 Stress–strain hysteresis loop for nonvascular tissue: a the ligamentumnuchae (a ligament)
(collagen denatured at 76◦ C, so it is mostly elastin), b tendon (mostly collagen), and c (passive)
intestinal smooth muscle. The vertical axis units are those of stress when multiplied by g. (From
[5, 25])

Fig. 4.50 Stress relaxation
in nonvascular tissue: a the
ligamentum nuchae
(collagen denatured at 76◦ C,
so it is mostly elastin),
b tendon (mostly collagen),
and c (passive) intestinal
smooth muscle. The vertical
axis units are those of stress
when multiplied by g. (From
[5, 25])

there is immediatemotionwith v = dx/dt = F0/c. As seen in Fig. 4.55a, the dashpot
piston is at position (F0/c)t . This creep response stops suddenly when the force is
removed, because v = dx/dt immediately becomes zero. If we suddenly subject
the material to a deformation x0 (or a strain), with a step-like function, there is an
immediate, very large, short-enduring force (described by a Dirac delta function
response—see below) (Fig. 4.55b). With continued application of this deformation
or strain, the force remains zero. Clearly, the responses of the dashpot and spring to
applied stresses and applied strains are very different.
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(a) (b)

(c)

Fig. 4.51 a Controlled ramp deformation of cartilage from time 0 to t0 and the b (viscoelastic)
stress response, initially to σ0, and later to the steady state value σss, along with (a) and c physical
model of the response. This response includes interstitial fluid flow (arrows)—initially out of and
within the solid matrix and later only within the matrix—and also the deformation of the solid
matrix of the cartilage. (Based on [32, 50, 52])

Fig. 4.52 Stress–strain for
cartilage at different strain
rates. (From [45], as from
[73])

4.5.3 Simple Viscoelastic Models

Three models are commonly used to describe viscoelastic materials. Each combines
these idealized springs and dashpots in different ways (see Fig. 4.56) [22, 27]. (a)
A Maxwell body is a dashpot and spring in series. (b) A Voigt body is a dashpot
and spring in parallel. (c) A Kelvin body is a dashpot and spring in series, which are
in parallel with another spring. The Kelvin model is also called the standard linear
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(a)

(b)

Fig. 4.55 Response by a perfect dashpot. a Creep. b Stress relaxation

xT
j = xE

j + x j . Reference to an equilibrium length is important in describing springs,
because F = kx = k(xT − xE).

Maxwell Model

The force F applied at the end of a Maxwell body (Fig. 4.56a) is felt equally by
the dashpot (unit “1” ) and spring (unit “2” ), so F = F1 = F2. Therefore, for the
dashpot

F1 = F = c
dx1
dt

(
= c

dxT
1

dt

)
(4.49)

and for the spring
F2 = F = kx2 (= k(xT

2 − xE
2 )). (4.50)

The total length is xT = xT
1 + xT

2 , so dxT/dt = dxT
1 /dt + dxT

2 /dt . Because the
equilibrium lengths do not vary with time (dxE/dt = dxE

1 /dt = dxE
2 /dt = 0), we

find
dx

dt
= dx1

dt
+ dx2

dt
. (4.51)

Using (4.49), we see that dx1/dt = F/c. From (4.50), we see x2 = F/k, and taking
the first time derivative of both sides gives dx2/dt = (dF/dt)/k. Using (4.51), we
find

dx

dt
= F

c
+ dF/dt

k
. (4.52)

This is the equation that relates the deformation x(t) and force F(t) for a Maxwell
body. (Note how this reduces to the derivative of the relation for a perfect spring for
large c and to the relation for a dashpot for large k.)
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(a)

(b)

(c)

Fig. 4.56 Maxwell, Voigt, andKelvin (standard linearmodel)mechanicalmodels of viscoelasticity.
The symbols for the springs and dashpots are the same as those used in Fig. 4.43. (Based on [25])

To test creep, a force F0 is suddenly applied at t = 0. There is no change in the
displacement of the dashpot, so xT

1 = 0 then. The spring immediately responds to
give x2 = F0/k, so overall the initial condition is x(0) = F(0)/k (for either creep
or stress relaxation), and for F(t = 0) = F0 it is x(t = 0) = F0/k.
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Fig. 4.57 a Heaviside step
function θ(t) and b Dirac
delta function δ(t). The area
under the Dirac delta
function remains 1, as the
width T → 0 and the height
1/T → ∞. If these
functions start at a time other
than t = 0, say at t0, they are
written as θ(t − t0) and
δ(t − t0)

(a)

(b)

The sudden application of a constant force F0 can be represented by F(t) =
F0θ(t), where θ(t) is the Heaviside step function (Fig. 4.57a), alluded to earlier,
which is

θ(t) = 0 for t < 0; = 0.5 at t = 0; = 1 for t > 0. (4.53)

The time derivative dθ(t)/dt is the Dirac delta function δ(t) (Fig. 4.57b) which is
zero for all t except at t = 0, when it approaches infinity in such a way that its
integral over time remains unity, as in

δ(t) = 0 for t < −T/2; = 1/T for − T/2 < t < T/2; = 0 for t > T/2

(4.54)

in the limit that T goes to 0. (Of course, the Heaviside step function is the integral
of the Dirac delta function.)

To test stress relaxation, a deformation x0 is suddenly applied at t = 0. There is
no change in the force of the dashpot, so FT

1 = 0 then. A sudden application of a
constant deformation x0 can be represented by x(t) = x0θ(t).

The response of the Maxwell body to the applied force F(t) = F0θ(t) is

x(t) = F0

(
1

k
+ t

c

)
θ(t) (4.55)

and to the deformation x(t) = x0θ(t) it is

F(t) = kx0 exp(−(k/c)tθ(t)). (4.56)
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(a) (b) (c)

Fig. 4.58 Creep functions for the a Maxwell, b Voigt, and c Kelvin/linear standard models of
viscoelasticity, with force loading and subsequent unloading. Characteristic relaxation times are
shown. (From [25])

(a) (b) (c)

Fig. 4.59 Stress relaxation functions for the a Maxwell, b Voigt, and c Kelvin/linear standard
models of viscoelasticity, with a step function deformation. Characteristic relaxation times are
shown. (From [25])

These solutions can be proved by substitution in (4.52). (Also seeAppendixC.) These
results are plotted in Figs. 4.58a and 4.59a. (The plotted creep response is really that
due to a sudden application of a constant force—say at time t = 0—and then suddenly
turning it off—say at time t = T—and so the response to F(t) = F(θ(t)−θ(t −T ))

is actually plotted for this and the other two models.)
In the creep experiment, there is an immediate spring-like response. Then the

deformation increases (i.e., it creeps) linearly in time, as for the dashpot. When the
force is removed, the deformation immediately decreases to the value determined by
the spring component, and subsequently there is no more creep due to the dashpot.
This is a simple linear combination of the responses seen for the individual elements
in Figs. 4.54 and 4.55.

In the stress relaxation experiment, there is an immediate force response due to the
spring element, but this response decreases in an exponential manner, as exp(−t/τ ),
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due to the dashpot. The parameter τ = c/k is called a time constant; it has the units
of seconds. This response is clearly not a mere linear combination of the responses
for the individual elements.

Voigt Model

The combination of the elements is simple (Fig. 4.56b). The total force is the sum
of the individual forces on each element F = F1 + F2, and the deformations of
both elements are equal and they are equal to the whole x = x1 = x2. Because
F1 = c dx1/dt = c dx/dt and F2 = kx2 = kx ,

F = c
dx

dt
+ kx . (4.57)

The initial condition is x(t = 0) = 0 for any applied F , because the dashpot prevents
any immediate deformation.

The response of the Voigt body to the applied force F(t) = F0θ(t) is

x(t) = F0

k
(1 − exp(−(k/c)t))θ(t) (4.58)

and to the deformation x(t) = x0θ(t) it is

F(t) = cx0δ(t) + kx0θ(t). (4.59)

Again, these solutions can be proved by substitution in (4.57). (Also seeAppendixC.)
These results are plotted in Figs. 4.58b and 4.59b.

In the creep experiments, there is an exponential increase in creep, as 1 −
exp(−t/τ ), due to the dashpot—where again τ = c/k. If the force is removed,
this deformation decays to zero exponentially as exp(−t/τ ). This is qualitatively
different from the predictions of the Maxwell model.

In the stress relaxation experiments, there is an immediate and temporary Dirac
delta function increase in force, as seen for the dashpot alone, and then the response
is the constant value expected from the spring alone. Again, this is qualitatively
different from the predictions of the Maxwell model.

Kelvin Model (The “Standard” Linear Model)

In this model (Fig. 4.56c) the spring constant of the spring in series with the dashpot
is called k1; it was called k in the Maxwell model. The spring constant in parallel
with the dashpot and spring in series is called k2; the analogous constant in the Voigt
model was also called k.

The length of the dashpot is xT
1 = xE

1 + x1, while that of the top spring is xT
2 =

xE
2 + x2. The total length

xT = xT
1 + xT

2 (4.60)
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is also the length of the bottom spring. As with the Maxwell body, the same force

Fa = c
dx1
dt

= k1x2 (4.61)

is felt across the top dashpot and spring; the force

Fb = k2x (4.62)

is felt across the bottom spring. As with the Voigt model, the total force across the
parallel elements is

F = Fa + Fb. (4.63)

Our goal is to derive an equation that has only F , dF/dt , x , and dx/dt . Using
(4.61), we see dx1/dt = Fa/c and x2 = Fa/k1. The time derivative of the second
expression gives dx2/dt = (dFa/dt)/k1. Because dxE

i /dt = 0, from the first time
derivative of (4.60), we have

dx

dt
= dx1

dt
+ dx2

dt
= Fa

c
+ dFa/dt

k1
. (4.64)

Using (4.62) and (4.63), we find Fa = F − Fb = F −k2x . The first time derivative
of this is dFa/dt = dF/dt − k2dx/dt . Using these in (4.64) gives

dx

dt
= F − k2x

c
+ 1

k1

(
dF

dt
− k2

dx

dt

)
. (4.65)

Collecting the force and deformation terms on opposite sides of the equation gives

F + c

k1

dF

dt
= k2x + c

(
1 + k2

k1

)
dx

dt
. (4.66)

The second term on the left-hand side is absent in the Voigt model, while the first
term on the right-hand side is absent in the Maxwell model. Factoring out k2 gives

F + c

k1

dF

dt
= k2

[
x + c

k2

(
1 + k2

k1

)
dx

dt

]
. (4.67)

After introducing the time constants τε = c/k1 and τσ = (c/k2)(1 + k2/k1) =
c(1/k1 + 1/k2), this equation becomes

F + τε
dF

dt
= k2

(
x + τσ

dx

dt

)
. (4.68)
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This tells us that the force terms relax with a time constant τε, while the defor-
mation terms relax with a time constant τσ . This is clear because the solution to
Q + τ dQ/dt = 0 is Q(t) = Q(0) exp(−t/τ ).

For a suddenly applied force or deformation, the initial condition is τεF(0) =
k2τσx(0). The response of the Kelvin body to the applied force F(t) = F0θ(t) is

x(t) = F0

k2
[1 − (1 − τε

τσ
) exp(−t/τσ)]θ(t) (4.69)

and to the deformation x(t) = x0θ(t) it is

F(t) = k2x0[1 − (1 − τσ

τε
) exp(−t/τε)]θ(t). (4.70)

Again, these solutions can be proved by substitution in (4.68). (Also seeAppendixC.)
These results are plotted in Figs. 4.58c and 4.59c.

In the creep experiments, there is an immediate increase due to the k1 spring and
then an exponential increase in creep, as 1− exp(−t/τσ), due to the dashpot. When
the force is removed, this strain decays to zero exponentially as exp(−t/τσ).

In the stress relaxation experiments, there is an immediate finite increase in force,
and then the response relaxes as exp(−t/τε) to a constant value.

These predictions incorporate features from both the Maxwell and Voigt models.
The Kelvin model also cures the clear deficiencies in them, such as the unphysical
Dirac delta function in the stress relaxation response in the Voigt model.

4.6 Viscoelasticity in Bone

The stress in bone does not depend only on the current value of strain, but on how
fast that strain was applied. Figure4.46 shows that for a given strain the developed
stress is larger when the strain is applied fast. Similarly, the strain in the bone depends
not only on the current value of stress, but also on how fast that stress was applied.
Figure4.47 shows that for a given force load, the deformation is smaller when the
load is applied fast.

We examine this second case quantitatively by using the Kelvin standard linear
model. Let us apply a force F0 in a linearly increasing manner over a time T . As seen
in Fig. 4.60a, this means that F = F0(t/T ) from t = 0 to t = T . We will determine
the deformation x(t), so we can obtain the deformation when the total force F0 has
been applied, x(T ) and see how x(T ) depends on T .

We use F = F0(t/T ) and dF/dt = F0/T in (4.68) to get

k2

(
x + τσ

dx

dt

)
= F + τε

dF

dt
= F0

t

T
+ τε

F0

T
(4.71)
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Fig. 4.60 The deformation
(in (b)) resulting from a
linearly increasing applied
force (in (a)). The
deformation from (b) at the
end of the ramp, t = T , is
plotted in (c) as a function of
the ramp time T , which is
referenced to τσ

(a)

(b)

(c)

or

x + τσ
dx

dt
= F0

k2T
t + τεF0

k2T
, (4.72)

with x(t = 0) = 0.
This equation has the form

x + a
dx

dt
= bt + e, (4.73)

which has a solution

x(t) = bt + (e − ab)(1 − exp(−t/a)), (4.74)

that satisfies x(t = 0) = 0. The form of this solution can be verified by inserting it
into the original equation. Such a substitution also gives a, b, and e, which leads to
the final solution

x(t) = F0

k2T
t − cF0

k2
2T

(1 − exp(−t/τσ)). (4.75)

(See AppendixC.) Clearly, this is valid only for 0 < t < T . This solution can
be checked in Problem4.35, and is plotted in Fig. 4.60b. For t � τσ , x(t) ≈
F0(t/T )/(k1 + k2).
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The deformation x(T ) at the end of the force ramp is

x(t = T ) = F0

k2
− cF0

k2
2T

(1 − exp(−T/τσ)), (4.76)

which is plotted in Fig. 4.60c as a function of T . Applying the force quickly or slowly
really means that the time T is either much shorter or longer than the time constant,
τσ . In these limits:

x(T ) → F0

k1 + k2
when T � τσ and → F0

k2
when T � τσ. (4.77)

This model agrees with the experimental observations that the deformation is less
with faster loading (Fig. 4.47 for bone). More generally, the terms “fast” and “slow”
are relative to a characteristic time constant, which in this case is τσ . The analogous
stress relaxation experiment can be modeled in a similar way with the relevant time
constant τε, and is addressed in Problem4.38.

4.7 Bone Fractures

Bones in the skeleton are designed for several properties and functions. Muscles
create motion by swinging bones at articulations. With relatively stiff bones, the
muscles can be efficient in that when they contract they do not cause the bones to
deform. Stiff bones absorb relatively little energy before they fracture (see below),
whereas more compliant bones resist fracture more and are lighter (and there is less
mass for the body to lug around)—but they are less ideal for muscle action. Nature
compromises as needed. In children, efficiency of motion is less important than
resistance to fracture. The femoral bone is about 2/3 as stiff in children as in adults
and requires about 50% more energy to break. The bones of the inner ear need to be
stiff to transmit sound waves efficiently, but do not need to resist fracture because
they bear no loads.

We now consider the work of fracture WF, which is the amount of work that
has to be performed on a material to break it. It is usually defined as the energy
(J) needed for fracture per area (m2). This can be estimated from the elastic energy
stored using the stress–strain curves earlier in this chapter. Materials that have a
higher work of fracture are tougher than those with a lower one (Fig. 4.16). Typical
values are 1–10J/m2 for glass, ∼1,000 J/m2 for nylon, ∼10,000 J/m2 for wood,
and 103–104 J/m2 for bone. Materials with the same strength (UTS) are tougher (i.e.,
they require more energy to fracture) when they are less stiff (smaller Y ), because
the elastic energy stored per unit volume is PE/V = σ2/2Y = (UTS)2/2Y (4.17)
in the linear stress–strain limit.

Table4.5 shows that the mechanical properties of typical femurs, deer antlers, and
tympanic bulla (which are bony capsule housings in the ear) are quite different, even
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Table 4.5 Physical properties of different types of bone

Property Femur Antler Bulla

Young’s modulus (Y ) (GPa) 13.5 7.4 31.3

Ultimate bending stress (UBS) (GPa) 247 179 33

Work of fracture (WF) (J/m2) 1,710 6,190 200

Density (g/cm3) 2.06 1.86 2.47

From [47]. Using data from [16]

though they have comparable densities. Femurs supportweight duringmovement and
need to be stiff (large Y ), strong (large ultimate bending stress, UBS—see below),
and tough (large WF). Deer antlers need to be very tough with a very high work of
fracture to avoid breakage in deer fights (and they are tougher than femurs), but they
do not need to be really stiff or strong. Tympanic bulla house themiddle/inner ear and
keep out sounds other than those coming through the ear canal. This helps directional
hearing, with sounds detected in each ear at different times. This acoustic separation
is improved by increasing the ratio of Y for the bulla and water (see Chap.10); Y for
bulla is very high. The bulla do not need to be strong or tough. If forces were applied
that would be large enough to break them, the person would be dead anyway.

4.7.1 Modes of Sudden Breaking of Bones

Let us revisit the example from earlier in this chapter, when we considered howmuch
the femur shortens at theUCS = 170MPa = 170N/mm2.With no stress applied, the
femur is L0 = 0.5m = 500mm long and has a cross-sectional area A = 370mm2.
The UCS is reached when there is a force of (170N/mm2)(370mm2) = 56, 000
N = 12, 600 lb ∼6 tons on the femur. For a 70kg person (700N, 160 lb), this is 80×
body weight. Because the maximum force on the hip bone and femur during walking
is ∼2× body weight and during running it is ∼4× body weight, we are fortunately
well designed. There is a much larger overdesign protection in the long leg bones
during running than in the Achilles tendon!

The potential energy available during a fall to the ground from standing is
mbg(�hCM). A 1.8m tall person of mass 70kg, has a center of mass 0.9m above
the ground. When this person falls, the center of mass decreases to 0.1m and the
available potential energy is mbg(�hCM) = (70 kg)(9.8m/s2)(0.8m) ≈ 550 J.

How much energy is stored in the bones during this fall?Let us examine the largest
bone, the femur. We use (4.17) with L0 = 0.5m = 500mm and A = 330mm2, and
so V = 165,000mm3, andY = 17,900MPa = 17,900N/mm2. If the stress is either
the UTS = 122MPa = 122N/mm2 or UBS (ultimate bending stress, as described
below) = 170MPa = 170N/mm2 (Table4.6), then respectively in the harmonic
limit

http://dx.doi.org/10.1007/978-3-319-23932-3_10
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Table 4.6 Properties of long bones

Bone Y (×104MPa) UTS (×102MPa) UBS (×102MPa)

Femur 1.72 1.21 2.08

Tibia 1.80 1.40 2.13

Fibula 1.85 1.46 2.16

Humerus 1.71 1.22 2.11

Radius 1.85 1.49 –

Ulna 1.84 1.48 –

From [6]. Using data from [79]

PE = (UTS)2

2Y
V = (122N/mm2)2

2 × 17,900N/mm2 165,000mm3 
 69 J (4.78)

= (UBS)2

2Y
V = (170N/mm2)2

2 × 17,900N/mm2 165,000mm3 
 133 J. (4.79)

The energy needed to break long bones is clearly a reasonable fraction of that
available from the kinetic energy in common collisions, such as falls. If the available
energy is distributed to several of the long bones, there is enough for sudden fracture.
Our bones do not regularly break because most of the energy is absorbed by muscle
contractions and the deformation of soft tissues. Loads normal to skin, fat, and
muscles (and clothing) absorb energy upon compression and propagate stress waves
in the body. Fascia, tendons, ligaments, joint capsules, and contracted muscles brace
bones against bending by supporting part of the tensile forces and absorbing energy as
they are stretched. In elderly people bones fracture more easily because their bones
are weaker (because they are more porous, Fig. 4.19), their tissues are less suited
to absorb energy, which causes even more energy to be transmitted to the (already
weaker) bones, and they may fall more awkwardly and with less body breaking
action.

Bone fractures are determined by the mode of the applied loads and their orien-
tations. Bones are strongest in compression, less strong in tension, and weakest in
shear. Under some loading conditions there are tensile and shear or compressive and
tensile loads at a given position. Bones usually break by shear (twisting) stresses or
under tension, but not under compression because UTS < UCS. Figure4.61 shows
crack formation in bent and twisted long bones. Under bending there is tension on
one side and compression on the other. Because UTS < UCS, the fracture starts at
the side with tension. There are shear stresses at 45◦ to this load axis, but the tensile
stress is larger on the left side, so the crack propagates normal to the bone axis.
On the compressed side the shear stress (at 45◦) is large and the compressive stress
is <UCS, so cracking occurs at two 45◦ angles, leading to the butterfly fragment
seen in the figure. In twisting, the tensile stresses produce a spiral crack that winds
around the bone and the bone breaks when the ends of the crack are connected by a
longitudinal fissure [45].
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Fig. 4.61 Crack propagation
in bent and twisted bone. T
means tension and C means
compression. (From [45])

Fracture can be due to direct blows, such as by blows to the soft tissue surround-
ing the bone or by bullets, which break the bone in two (noncomminuted) at low
energy—leading to a transverse fracture, or into many pieces (comminuted) at high
energy (Fig. 4.62) [3, 40, 54]. Indirect blows, as in skiing, can lead to fractures that
are spiral, oblique, transverse with a butterfly fragment, and so on (Fig. 4.62). The
nightstick fracture of the ulna, shown in Fig. 4.63, is one type of low-energy, direct-
blow injury, and it is transverse. Figure4.64 depicts the classification of humerus
fractures. (Analogous classifications exist for other bones as well.)

As with any collision, we can lessen the likelihood of bone breakage in falls
by increasing the impact area and the collision time. Because bones are actually
viscoelastic, they absorb shocks a bit, which lessens the chance of fracture.

Breaking of Bones by Bending

Let us say we have a bone of thickness d that is symmetrical in the y direction. Will
it break when bent by a force F like the one in Fig.4.31?

We use the analysis we developed earlier this chapter. Equation (4.36) tells us
that σ(y) = Y (y/R), so with y = d/2 on the top surface and −d/2 on the bot-
tom, the maximum compressive and tensile stresses have magnitudes (Fig. 4.34)

|σmax,compression| = |σmax,tension| = Y
d

2R
. (4.80)

We would expect that the bone will break if either |σmax,compression| > UCS or
|σmax,tension| > UTS. Because UCS = 170MPa and UTS = 120MPa, we would
expect that the fracture will occur first in tension and consequently on the bottom
surface for hard bone (Fig. 4.35). However, this fracture really occurs at a slightly
higher value called the ultimate bending stress (UBS). The UBS is higher than UTS
for the long bones, as in seen in Table4.6. This table also shows that the mechanical
properties of the long bones in the leg and arm are very similar, but not identical.
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Fig. 4.62 Types of bone fractures resulting from different types of loading. (From [40])

Fig. 4.63 X-ray of a
nightstick fracture of the
ulna bone. (From [40])
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Fig. 4.64 AO-ASIF classification of humerus diaphysis fractures. A Simple fractures; A1 spiral,
A2 oblique (≥30◦), A3 transverse (<30◦); B wedge fractures; B1 spiral wedge, B2 bending wedge,
B3 fragmented wedge; C complex fractures; C1 spiral, C2 segmental, C3 irregular. (From [40])

Fracture occurs when

|σmax,bending| > Y
d

2Rmin
= UBS. (4.81)

Using (4.40) for the curvature, 1/|R| = |MB|/Y IA, the bone breaks for bending
moments

|MB| ≥ 2(UBS)IA
d

. (4.82)

Let us consider the example of one foot pinned at the ankle, while the other foot
is slipping [6]. The pinned foot could be in a hole in frozen snow, pinned during a
football tackle, or in a rigid ski boot. This situation is modeled in Fig. 4.65, where
we see the force of the body (minus that of the leg) Wb − Wleg, creates a torque about
the leg with a moment arm D of magnitude D(Wb − Wleg). D is the lateral distance
of the midline of the body (center of mass) from the pinned leg, and so

|MB| = D(Wb − Wleg) ≥ 2(UBS)IA
d

. (4.83)
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Fig. 4.65 Illustration of the
origin of the bending
moment in a person with a
pinned ankle, as during
falling. (From [6])

If the bone has a radius a, then IA = πa4/4 (because we can ignore the hollow nature
of the bone in this estimate) and using d ∼ 2a, the bone breaks when the moment
arm

D ≥ πa3

4

UBS

Wb − Wleg
. (4.84)

The tibia has its smallest cross-section about 1/3 of the way up from the ankle,
where a ∼ 1 cm. It is much thinner there than the humerus anywhere. The fibula is
even narrower, but bears much less of the force than the tibia. For Wb−Wleg = 640N
(145 lb) (for a 75kg, 750N, 170 lb person), this shows that fracture occurs when the
midline of the body moves more than 25cm from the pinned leg during the slip.

This approach is also valid for the fast collisions encountered in the rapid hand and
foot strikes used in karate. See the discussion in Chap. 3 about using this approach
to analyze the breaking of boards in demonstrations of karate.

Euler Buckling (Advanced Topic)

The occurrence of fractures depends on the ultimate strength, defects, and specifically
how loads are applied. Another type of macroscopic failure is buckling. This Euler
buckling can be demonstrated by pushing down on a drinking straw that is standing
upright on a table.When long thin tubes are compressed, the middle bows to one side
and collapses. This mode of failure is associated with the stiffness of the material,
and not its strength. This is different from the bending that occurs when a bar along
the x-axis is fixed at one end, and the free end is pushed by a force F in the y direction
(normal to the x-axis), as with bending in (4.44)–(4.46) and Fig. 4.40; the moment
there is the force along the y-axis × the moment arm along x . Here the force is
actually applied along the y-axis.

http://dx.doi.org/10.1007/978-3-319-23932-3_3
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Let us consider a bar or column of length L fixed at both ends (x = 0 and x = L)
with a compressive load S applied along the x-axis (Fig. 4.66a). The moment MB

in (4.44) now becomes Sy because the y-axis is normal to the applied force, so the
curvature, from (4.40) and (4.44), becomes

d2y

dx2
= − Sy

Y IA
, (4.85)

where Y is Young’s modulus and IA is the area moment of inertia. So we see that

d2y

dx2
+ λ2y = 0, (4.86)

where we have used λ2 = S/Y IA. This has a solution

y(x) = A sin λx + B cosλx, (4.87)

which can be proved by substituting this into the previous equation (see AppendixC).
The constant B = 0 because y = 0 at x = 0 and so y(x) = A sin λx . Because y = 0
at x = L , either A = 0 or sin λL = 0. The former boundary condition implies
the bar will always be straight, while the latter allows for the possibility of buckling
(with indeterminate and conceivably very large amplitude A). This latter condition is
satisfied by λL = nπ, with n = 1, 2, 3, . . .. This means λ2 = S/Y IA = n2π2/L2,
so S = n2π2Y IA/L2. The lowest load that this buckling can occur at is the critical
load Sc with n = 1

Sc = π2Y IA
L2

. (4.88)

Fig. 4.66 a Before and
b after Euler buckling of a
bar or column. The bottom
of the bar corresponds to
x = 0 and y = 0. c A free
body diagram of a part of the
bar showing the external and
internal forces and the
moments acting on this
column. (From [26])

(a) (b) (c)
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For a beam of radius a and thin wall of thickness w � a (a2 = a, a1 = a − w),
IA,hollow = πa3w, so Sc = π3Y a3w/L2. Consequently, although making the walls
of bone progressively thinner does not hurt its resistance to bending per unit mass,
it will buckle more easily.

4.7.2 Stress Fractures (Advanced Topic)

We have seen that bones can fracture when the stress on them suddenly exceeds a
given failure limit. They can also fracture more gradually from damage from pro-
longed continuous stress (creep, as with sitting) or prolonged cyclic stress (fatigue,
as with walking or running) (Fig. 4.67). When the rate of damage exceeds the rate
of repair by the body (known as remodeling), the bone fails as a result of a stress
fracture.

Wewill nowassess the occurrence of such fractures by looking at the applied stress
and the resulting strains. From earlier in this chapter, we know that the microstrain
in long bones is ∼10,000με (1%) at the UCS. This is usually not reached. The
peak functional microstrain in bones in most animals is between 2,000 and 3,000με

at peak performance. Strains in thoroughbred horses are routinely 5,000–6,000με

during racing. In humans, some studies indicate that the peak functional microstrains
in the tibia, where stress fractures often occur, do not exceed 2,000με, while others

Fig. 4.67 Test strain ranges in compression and tension that lead to fatigue damage (stress fractures)
in human cortical bone when applied for given number of cycles, referenced to the strains that
simulate walking, running, and other strenuous exercise. There are approximately 5,000 cycles
of testing (each corresponding to a step) in 10miles (16km) of running (which are the ranges of
strain in either compressive or tensile loading experiments that simulate walking, running, and other
strenuous exercise). (Based on [11, 24])
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suggest that microstrains over 3,000με can occur during jumping; this explains why
“shin splints” are not uncommon among basketball players.

The study of how a flaw or crack grows under stress and leads to catastrophic
failure is called fracture mechanics. The derivation of relations of linear elastic
fracture mechanics is beyond the level of this text (see [45, 49, 62, 70]). Nonetheless,
we will present some results from this field to help us understand stress fractures
better.

Let us consider a thin plate with an elliptical hole with minor and major
radii a and b, as in Fig. 4.68. With stress s applied parallel to the minor axis,
the stress is maximum at the semimajor axis end as shown, and has magnitude

σ = s

(
1 + 2a

b

)
. (4.89)

(The value of stress far from the crack is the applied stress s.) As a becomes much
greater than b, the ellipse becomes narrower and begins to look more like a crack;
then this relation is no longer valid. The stress pattern can then be determined, and
expressed as a function of the distance from this same point (the end of the major
axis) r and the angle from this axis θ, as shown in Fig. 4.68. For a given r , the stress
is a maximum for θ = 0◦ (which makes sense from symmetry) and it varies as

σ = s

√
a

2r
. (4.90)

The stress increases nearer and nearer the crack (as r becomes small), but it does
not really become infinite at the crack as this expression would suggest. The dis-
tance dependence can be brought to the left-hand side to obtain the stress intensity
σ(2r)1/2 = sa1/2. A stress intensity factor K is commonly defined, which is fairly
similar to this stress intensity with the same (stress)(distance)1/2 units, but it is more
general:

Fig. 4.68 An elliptical hole
in a plate structure with
stress tension s has much
higher stress at the
concentration point shown.
(From [45])
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Table 4.7 Fracture toughness of materials

Material Kc (MPa-m1/2)

2024 aluminum 20–40

4330V steel 86–110

Ti–6Al–4V 106–123

Concrete 0.23–1.43

Al2O3 ceramic 3.0–5.3

SiC ceramic 3.4

PMMA polymer 0.8–1.75

Polycarbonate polymer 2.75–3.3

Cortical bone 2.2–6.3

From [45]

Fig. 4.69 Modes of cracking: I, the opening mode; II, the forward shear or sliding mode; III, the
antiplane shear or tearing mode. (From [45])

K = Cs
√

πa. (4.91)

C is a dimensionless constant that depends on the size and shape of the crack and
object, and how the stress is loaded. If K exceeds a critical value, the fracture tough-
ness Kc, the crack will propagate; the larger K is above this value, the faster the
crack will propagate. If it is smaller, it will not propagate. Kc is an intensive property
of the material (Table4.7).

Figure4.69 shows three ways stresses can be applied to cause crack propagation,
to the right in each picture. In Mode I the load is tensile (and here vertical) and
perpendicular to the crack propagation direction, as in splitting a log lengthwise. In
Mode II the load is shear, and parallel to the plane of the crack and the direction of
crack propagation. In Mode III the shear load is perpendicular to the crack direction,
as in tearing paper.

For Mode I cracks the constant C in (4.91) differs for different crack locations,
such as those shown in Fig. 4.70. For a plate of width w under tension and a crack
of length a on one edge, this constant is
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(a) (b) (c)

Fig. 4.70 Typesof fracture forMode I cracks,with a–c corresponding to (4.92)–(4.94), respectively.
(Adapted from [45])

C = 0.752 + 2.02q/π + 0.37(1 − sin(q/2))3

cos(q/2)

√
2

q
tan(q/2) (4.92)

using q = πa/w.
For cracks of length a on both edges, it is

C = (1 + 0.122 cos4(q))

√
1

q
tan(q). (4.93)

For a crack of length 2a in the center, it is

C =
(
1 − 0.10

(q

π

)2 + 0.96
(q

π

)4
)√

sec(q). (4.94)

For cortical bone, Kc = 2.2–5.7MPa-m1/2 for a Mode I transverse fracture of the
tibia and a Mode I longitudinal fracture of the femur. It is 2.2–2.7MPa-m1/2 for a
Mode II fracture of the tibia. In each case the crack propagation is parallel to the long
axis of the bone. Transverse propagation of cracks in long bones, perpendicular to
the lamellar structure, causes the crack to turn along the long axis. Crack propagation
in long bones is very anisotropic. The laminate structure of bones can stop or redirect
a crack.

For a small crack in a large plate q = πa/w � 1, for which (4.92)–(4.94) each
gives C ∼ 1, and the critical condition is K = Kc ∼ s(πac)

1/2 or

ac ∼ K 2
c

πs2
. (4.95)

As before, if the body weight of 700N (for a 70kg person) were distributed over the
femur cross-sectional area 370mm2, the stress s = 2.1N/mm2. Because 1MPa =
1N/mm2, a typical Kc = 4MPa − m1/2 = 4N/mm2−m1/2. This gives ac ∼ 1m.
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Does it make sense that a crack in the femur would have to be 1m long for the bone
to spontaneously fracture—especially when we know the bone is shorter and much
narrower than this? Yes, because we would expect (and hope) that normal people
would not get stress fractures by standing on one leg. If ac were very small ∼1mm,
then our bones would fracture with the slightest of flaws when we stood up. If the
stress were 10× larger (corresponding to 10× body weight), the critical crack length
would be 100× shorter or ∼1cm. Also, note that our initial ac ∼ 1m result violates
the q = πa/w � 1 assumption we made that led to C ∼ 1. We could have used the
exact form(s) for C , but still would have obtained a large value for ac.

The energy needed to break bonds in cracking comes from stored elastic energy.
Cracks grow when the decrease in strain energy (from strain relief) dU/da (= G,
the strain energy release rate) that occurs from the crack propagating a distance a
exceeds or equals the energy or work dW needed to propagate the crack a distance
a, which is dW/da (= crack growth resistance R). The strain energy release rate for
Mode I cracks is [45]

G = dU

da
= πas2

Y
. (4.96)

for a crack of length a and stress s. Using (4.91),

G = K 2

CY
. (4.97)

There is much more understood about fracture, which we will not cover [31, 45,
70]. For example, the elastic model presented here ignores the plastic deformation
that occurs very near the crack.

4.8 Common Sports Injuries

Aswehave seen, damage to bones, ligaments,muscles, etc. can result fromcollisions,
excessive stress or strain, and from repeated usewithmoderately large stresses. These
often lead to injuries in sports, including injuries to the following [36, 48]:

Head

1. Concussions are described in Chap.3, and are common in boxing, football, and
hockey. They also occur in baseball when pitchers successfully throw at batters’
heads.

Shoulder

1. In a separated shoulder there is ligament damage that can occur from collisions
in several sports. Ligament stretching is a first degree separation, a slight tear is a
second degree injury, and a complete tear is a third degree injury.

http://dx.doi.org/10.1007/978-3-319-23932-3_3
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2. In a dislocated shoulder the arm is out of the joint, which can result from collisions
in several sports.
3.Rotator cuff injuries involve a strain or tear in the four muscles around the shoulder
(supraspinatus, infraspinatus, subscapularis, and teres minor) that hold the humeral
head into the scapula. They are not uncommon in activities requiring the arm to
be moved over the head many times (leading to the overuse of the shoulder), as in
baseball pitching, swimming, weightlifting, andracket sports such as tennis.

Elbow

1. Forehand tennis elbow (golfer’s elbow, baseball elbow, suitcase elbow) (medial
epicondylitis) is due to forceful wrist flexion and pronation that can damage the
tendons that attach to the medial epicondyle, and is common in tennis (when serving
with topspin), pitching in baseball, and throwing a javelin.
2. Backhand tennis elbow (lateral epicondylitis) is caused when using the grasping
and supination muscles. Damage occurs to the extensor tendons when the wrist is
extended and to these muscles, such as during backhand returns in tennis.
3. A torn ulnar collateral ligament is common for baseball pitchers due to the overuse
of the elbow. It is corrected by Tommy John surgery, as pioneered by Dr. Frank Jobe,
in which the torn ligament is replaced by a tendon from somewhere in the body.

Hip

1. In a hip flexor there is damage to muscles around the hip.
2. In a hip pointer there is a bruise or fracture to the hip iliac crest (Figs. 2.14 and
2.15) and occurs in collisions in football and hockey.
3. Avascular necrosis is an injury due to collisions that results in a lack of blood
supply to joint regions and their subsequent death. It is most common in the hips,
but also is seen after collisions of the knees, shoulders, and ankles.

Legs

1. Hamstring pulls—as in: I pulled my “hammie”—are common in sports with much
running, such as in track running and baseball, and occur in simultaneous (eccentric)
contractions of the quadriceps and hamstrings, when the hamstrings are <60% as
strong as the quadriceps muscles.
2. Shin splints are muscle pulls, often found in running.

Knee

1. Increasingly common are sprains or tears to the anterior cruciate ligament (ACL)
(Fig. 1.3). Injuries to the ACL are not uncommon in skiing, basketball, soccer, and
football when the leg is contorted at the knee and this ligament is excessively elon-
gated.
2. Runner’s knee is pain behind and on either side of the kneecap (patella), due to
the rubbing of the kneecap against the lateral condyle of the femur (cartilage), and
can result from downhill running and walking downstairs. Soreness in the tendons
above and below the knee, patella tendinitis, can occur from repetitive overloading
due to jumping and running.

http://dx.doi.org/10.1007/978-3-319-23932-3_2
http://dx.doi.org/10.1007/978-3-319-23932-3_2
http://dx.doi.org/10.1007/978-3-319-23932-3_1
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Foot

1. Turf toe is a bruise to the last joint in the toe, the metatarsal phalangeal joint. It
can occur from jamming the toe into turf, as in football collisions.
2. Metatarsal stress fractures (in the toes) are common in running due to pushing off
from the toes.
3. Plantar fasciitis is an injury to the plantar fascia under the arch of the foot, and
is seen in long distance running, squash, tennis, and basketball. (The fascia are the
surrounding soft tissues.)
4. Injuries to the Achilles tendon (Figs. 1.8 and 3.34), including tendinitis (inflam-
mation) or tearing is common in many sports with repetitive overloading, as in speed
running, squash, and tennis, due to excessive tendon elongation. We have seen that
the stresses in this tendon during running are not that far below the UTS.

Spine and Back

1. In a herniated disc a vertebral disc (Fig. 2.37) is displaced and presses against
nerves. Lower back pain can also result when muscles in the lower back become
strained or when the ligaments interconnecting the lowermost five vertebral bones
become sprained (lumbar strain). Such injuries can result during weightlifting, mod-
erate lifting using back muscles instead of leg muscles, and sitting or lying down in
positions that do not permit your spine to assume its natural curvature.

Generally to Bones and Cartilage

1. Stress fractures of bones are slight fractures due to repeated stress, such as to the
foot or shins after excessive running.
2. In a compound fracture the bone breaks through the skin, and this can occur from
collisions in skiing and football.
3. Fractured ribs can result from collisions. (Strains or tearing of intercostal muscles
between the ribs can result from awkward motions such as overreaching.)

Injuries during games and practices in 15 common college sports occur most
commonly in the legs (∼54% of them), arms (∼18%), trunk and back (∼13%), and
head and neck (∼10%), and the injury rate per 1000 athlete exposures is ∼0.15
for anterior cruciate ligament injuries, ∼0.35 for concussions, and ∼0.8 for ankle
ligament sprains (and, of course, each frequency is different for each sport) [33].
(An athlete exposure is defined as one athlete participating in one game or practice,
in which he/she is exposed to the possibility of athletic injury.) For games, for men,
the highest injury rate occurs for football (which is not surprising at all) (∼36 per
1000 athlete exposures) followed bywrestling (∼26), with baseball having the lowest
injury rate (∼6), and for women, the highest rate occcurs for soccer (∼16) and the
lowest occurs for softball (∼4).

http://dx.doi.org/10.1007/978-3-319-23932-3_1
http://dx.doi.org/10.1007/978-3-319-23932-3_3
http://dx.doi.org/10.1007/978-3-319-23932-3_2
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4.9 Avoiding Fractures and Other Injuries:
Materials for Helmets

In this chapter we have discussed some of the consequences of collisions, i.e., bone
breakage (and there are others, such as hematomas, etc.), and in Chap. 3 we briefly
discussed how to lessen the effects of collisions by increasing the collision time and
contact area. Helmets mitigate the effects of collisions of the head [55]. They consist
of an outer shell and an interior liner. The shell transmits the impact load over the
larger area of the liner, which absorbs most of the kinetic energy of the head. The
hard shell of helmets also helps to prevent skull breakage. The cushioning material
material and design appear to help decrease linear accelerations and the concussions
they can cause, but apparently do not help decrease rotational acceleration and its
effect. Helmets are now routinely used to lessen the effects of collisions and are used
in football, hockey, skiing, cycling, and in some cases in baseball (by batters, with
future use by pitchers possible). Soft headgear helmets are used by amateur boxers
and by professional boxers during training. Face protection is common in ice hockey
and football.

For a helmet to meet its goals for most of these activities, the shell must be rigid
(i.e., be very stiff to resist deformation), tough (i.e., have high bulk strength to limit
fracture), and hard (i.e., have high surface strength to prevent penetrating injuries),
so that a large area of impact of the head into the liner can be maintained, and it
should be light. The shell is oftenmade fromfiber-reinforced plastics (fiberglass/resin
composites) and thermoplastics (such as polycarbonate).

Liners must be capable of being compressed and absorbing energy at a force level
low enough so the peak force and acceleration felt by the head are minimized and
the collision time is maximized. It is very good for the helmet cushion material to
have high hysteresis. Figure4.71 shows three types of materials, with very different
force/deformation (stress/strain) curves. Type A is a linear spring and type C is a
more realistic material. Type B is an ideal helmet material because it deforms at a
constant stress, which is low enough to be of value in collisions. Figure4.72 shows
three materials. The shaded area, which is the work done on the material, is the same
under each curve. For the stiff (large Y ) and compliant (small Y ) materials, the peak

Fig. 4.71 Stress–strain
curves for padding materials
that could potentially be used
in safety helmets. (From
[55])

http://dx.doi.org/10.1007/978-3-319-23932-3_3
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Fig. 4.72 Effect of the padding strength for the same energy absorbed. The peak force exceeds
the maximum allowable force for the “strong” (or stiff) and “weak” (or compliant) materials. The
weak material is crushed to just about its initial thickness and then becomes very stiff. (From [55])

Fig. 4.73 Stress–strain for real padding materials: 1-Arcell, 2-Arsan, 3-EPS (expanded
polystyrene), 4-Polypropylene. The energy absorbed is the area under the loading curve minus
that under the unloading curve. (From [55])

force is very high at the end of deformation, while for the intermediate material, it
is much smaller. This makes it a better material for a liner. (Ideally, the force should
be independent of deformation, as for material B in Fig. 4.71.) The stress should be
relatively independent of the strain rate, so the liner would work well at high and
low impact speeds. As shown in Fig. 4.73, the material should deform plastically and
have a large stress–strain hysteresis loop. Then the liner material absorbs the energy
of the head impact and does not transfer it back to the head (during the collision),
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Fig. 4.74 Helmeted impact deceleration with initial speed of 5.63m/s. (From [55])

as would a compliant, spring-like material. If the helmet is to be used over and over
again, the deformation or strain remaining after a cycle should be minimal. The area
of impact of the head on the padding should be maximized. The thickness of the
padding should be increased as much as possible, subject to weight and bulkiness
constraints, because of limitations on how much it can be compressed during the
impact. Also, when the padding is fully crushed, it becomes very stiff, resulting in
high forces. (The maximum designed compression is about 80%.) Energy absorbing
liners are usually made of semirigid polyurethane foams or expanded polystyrene
bead foams. (Spongy bone at the end of long bones should have similar properties.)
The deceleration while wearing a good helmet is shown in Fig. 4.74.

Decreasing the highest end of accelerations is most effective in decreasing the
frequency of concussions. This can be done (and has been done) by improving helmet
design, such as by using better materials and design, and includes the use of sectioned
padding regions with air gaps so they can expand laterally when compressed, better
padding contact with the mandible, and so on [13, 68]). Also, this can be done in
sports by regulating the types of collisions that are allowed, such as by forbiddinghead
contact during football tackling. There is still much to be learned about optimizing
helmet design to minimize the rate of concussions during athletics [14].
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4.10 Mechanical Properties of Food

While we do not want other objects to break our bones, we want our bones (really our
teeth) to “break” or fracture food when we chew it, and so the desirable mechanical
properties of food need to differ from those of the structural components of our
bodies. Our ability to digest food efficiently (Chap. 6) depends on our ability to
chew foods properly (Chap.3) and the mechanical properties of the food [41, 43].
Our teeth are not designed to cut through the tough fibers in raw meat, even with
extended chewing. It becomes easier to chew if the meat is first cooked and cut into
small pieces.Making plants more useful foods involves breaking down cell walls and
other fibers that are difficult to digest. During chewing, at low stress foods elastically
deform, and with successively increasing stress they plastically deform, then crack,
and then these cracks propagate across them.

Stiff foods, such as apples and crackers, have large Young’s moduli (called E
in this community instead of Y ) and so high stresses (and forces) are required to
crack them. These hard foods have large values of (E R)0.5, where R is the toughness
(area under the force-area curve divided by the crack area, which is related to the
energy needed to break bonds during cracking, and which is also called WF). They
have a concave-down stress-strain curve as in Fig. 4.18, sometimes called r-shaped,
and are called force-limited or (E R)0.5 foods. The incisors create high stress and
are used to crack these foods without the need of the tooth cusp to continue the
crack development or displacement. The crunchiness you hear when eating some
foods, such as raw carrots, is due to mini sonic booms in your mouth when the crack
propagation speeds exceeds the speed of sound, because the energy being released
during crack propagation is much larger than the toughness [65, 67, 76].

More compliant foods, such as meat or spinach, are not stiff and require much
energy to tear them or slice them apart, and consequently they have high tough-
ness, due to collagen (in meat) or cellulose (in plants). Such tough foods have high
(R/E)0.5 and have a concave up stress-strain curve as in Fig. 4.21, sometimes called
J-shaped, and are called displacement-limited or (R/E)0.5 foods; for these foods
the tooth cusp needs to continue the crack displacement once fracture starts. Lat-
eral and forward/backward motions of the molars are used to break down these
foods. Figure4.75 illustrates the increase in number of food particles with continued
chewing.

The forms for these scaling parameters are not surprising given the discussions
earlier this chapter. The threshold for a crack to propagate, K , varies as (GY )0.5

at threshold according to (4.97), which is (E R)0.5 with E = Y and R = G as is
common in this field, so it is reasonable that this is the scaling parameterwhen force is
the limiting factor. Crack propagation is expected using the three-point configuration
for bone bending in Fig. 4.26, where the F1 and F2 points of contact can now be two
cusps on a molar in the lower jaw, with F applied from a cusp from a tooth in the
upper jaw. The threshold stress for fracture and propagation varies as E according
to (4.81), so in this case (E R)0.5 divided by E , or (R/E)0.5, could be a good scaling
parameter [43].

http://dx.doi.org/10.1007/978-3-319-23932-3_6
http://dx.doi.org/10.1007/978-3-319-23932-3_3
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Fig. 4.75 Schematic of the particle size distribution when chewing a piece of a raw carrot,
illustrating the increasing number of pieces (comminution) with the number of chews. (Based
on [43])

(a) (b)

Fig. 4.76 Effect of cooking on the mechanical properties of a a potato by boiling (including inset)
and b beef by roasting. (Based on [41, 43])

Processing and cooking food serve several functions [41, 43]. For example, cook-
ingmakes nutrients more accessible, inactivates toxins in foods, extends food storage
time, and makes food easier to chew. Cooking denatures collagen, bursts cells, and
softens cellulose and this helps us fracture foods when we chew them. As seen in
Fig. 4.76a, boiling decreases the Young’s modulus and toughness of potatoes (they
are more tender and less stiff), making them easier to fracture during biting. The
toughness of a potato decreases from 225J/m2 when raw to 38J/m2 after 10min of
boiling and the stress-strain curve becomes J-shaped [43]. Roasting decreases the
toughness of the flesh inside of a potato to 59J/m2 and the casing to 123J/m2. Raw
meat is so compliant and tough because it has much collagen, and it is difficult to
fracture. As seen in Fig. 4.76b, roasting beef increases its Young’s modulus, which
allows fractures to propagate easier and makes it more chewable. Processing and
cooking food makes it easier to fracture, so less force is needed during chewing,
fewer chews are needed, and the utilization of the nutrients in food is improved, so
we need to eat less food. Figure4.77 shows that the stress-strain relation of foods, in
this case Gouda cheese, also depends on age and on strain rate [76].
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Fig. 4.77 The stress-strain
curve of Gouda cheese
depends on age (straight
lines for two weeks old,
dashed line for one year old),
and on strain rate. (Based
on [76])

4.11 Summary

Understanding the stress, strain, and fracture of bodymaterials andparts is essential to
explain the performance of the human machine under normal and extraordinary con-
ditions. Time-independent material models, describing harmonic and non-harmonic
elastic behavior, and time-dependent viscoelastic models can be used to characterize
and understand the stress–strain relations of the bodymaterials and components. The
mechanical properties of the many parts of the body involved in structure, motion,
and organ operation, are all very different; these properties depend on their com-
position, structure, and composite nature. The deformation of extended body parts,
such as the bending of bones, and the mechanics of fracture are needed to analyze
the body under extreme conditions that can lead to injury.

Problems

Stress and Strain

4.1 Determine the spring constant, k, in SI units for a solid cylinder of cortical bone
of length 0.5m, diameter 2cm, and Y = 17.4GPa.

4.2 A cylindrical spring of length 2cm and diameter 3mm has spring constant
k = 1.7 × 105 N/m.
(a) How much does it extend when a force of 100N is applied to it?
(b) What is the strain?
(c) The spring is composed of a uniform material. Find its Young’s modulus (in
MPa).

4.3 Equation (4.8) shows how Young’s modulus, the shear modulus, and Poisson’s
ratio are interrelated for an elastic isotropic material. The bulk modulus B is the
negative of the pressure divided by the fractional change in volume caused by that
pressure, and it can be related to any two of these three above parameters. Show that
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