1. Angular Momentum in Quantum Mechanics

Before starting a detailed discussion of the underlying mechanisms that establish
the nuclear shell model, not only for the single-particle degrees of freedom and
excitations but also in order to study nuclei where a number of valence nucleons
(protons and/or neutrons) are present outside closed shells, the quantum mechani-
cal methods are discussed in some detail. We discuss both angular momentum in
the framework of quantum mechanics and the aspect of rotations in quantum me-
chanics with some side-steps to elements of groups of transformations. Although
in these Chaps. 1 and 2, not everything is proved, it should supply all necessary
tools to tackle the nuclear shell model with success and with enough background
to feel at ease when manipulating the necessary ‘“Racah”-algebra (Racah 1942a,
1942b, 1943, 1949, 1951) needed to gain better insight into how the nuclear shell
model actually works. These two chapters are relatively self-contained so that one
can work through them without constant referral to the extensive literature on
angular momentum algebra. More detailed discussions are in the appendices. We
also include a short summary of often used expressions for the later chapters.

1.1 Central Force Problem and Orbital Angular Momentum

A classical particle, moving in a central one-particle field U(r) can be described
by the single-particle Hamiltonian (Brussaard, Glaudemans 1977)

2
H=2 iU . (1.1
2m

In quantum mechanics, since the linear momentum p has to be replaced by the
operator —i AV, this Hamiltonian becomes

hZ
H=——A+U(), (1.2)
2m

where A is the Laplacian operator. The orbital angular momentum itself is defined
as

l=rxp, or (1.3)
l=—ihrxV, (1.4)



1.1 Central Force Problem and Orbital Angular Momentum 5

as the corresponding quantum mechanical angular momentum operator. The com-
ponents can be easily obtained in an explicit way by using the determinant notation
for l, ie.,

i jJ k
el oy oz

ih __3_ 2_ _‘2_ , (1.5)
oxr Oy 0z

where %, j, k denote unit vectors in the z, y and z direction, respectively.
The commutation rules between the different components of the angular mo-
mentum operator can be easily calculated using the relations

[z, pz| = 2Pz — ez = 1K, (1.6)
which leads to the results
[ls, ly] =ihl, , (1.7)

with cyclic permutations.
We can furthermore define the operator that expresses the total length of the
angular momentum as

P=P2+02+12, (1.8)
which has the following commutation relations with the separate components
[lz, l,] =0 (i=zu,2). (1.9)

If we now try to determine the one-particle Schrodinger equation that corresponds
to the central force problem of (1.1), we can use a shorthand method for evaluating
the operator I2. Starting from the commutation relations (1.6), one can show that

P=(rxp)-(rxp)=r’p*—r@- -p)-p+2ikr-p, (1.10)
and using
)
r-p=~ih7'5, (1.11)

one obtains

0 0
2,22, 32 2
I"=r"p°+ h o (r ———ar). (1.12)

The kinetic energy operator of (1.1) then becomes

2 2 2
p~ - ¢ h a(ﬁg;). (1.13)

“om  2mr? 2mr? or
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We shall now briefly recapitulate the solutions to the central one-body Schrodinger

equation, solutions that form a basis of eigenfunctions of the operators H, I* and
[, simultaneously. So, we can write still in a rather general way that

Ho(r) = Ee(r) , (1.14)

Po(r) = BPAp(r) . (1.15)

The Schrodinger equation (1.14) now becomes [using (1.15)]

2 2
{ h 6(28>+ AR +U(r)}<p(’r)=E<P("°)- (1.16)

" 2mrZ or 4 or 2mr?

Using a separable solution of the type

r
o) = ROY6,9)= 22 - Y0, 0, (1.17)
the radial equation becomes
R dur) [ AR
-5 d’i(z U [ —— +U()|ulr) = Bu(r), (1.18)

and its solution, in particular, depends on the choice of the form of the central
potential U(r). This particular problem will be discussed in Chap. 3.

The eigenfunctions for the angular part of (1.16) can be obtained most easily
by rewriting the angular momentum > operator explicitly in a basis of spherical
coordinates (Fig. 1.1). One works as follows:

Fig.1.1. The cartesian and spherical coordinates for the point
P(r) (z,y, 2) and (1, 6, ©) for which the orbital angular mo-
_______ A mentum is analyzed
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i) rewrite the cartesian components [;,ly,[, as a function of the spherical coor-
dinates (r, 6, )

ly = ih(Sin w-é% + cot 6 cos (,0%) ,

0 0
=ikl — — in p— 1.1
Ly xh( cosg089+cot03m<paw), (1.19)
., 0
lz—":"‘lﬁb—(’z.

For more details, see (Sect. 1.3).
ii) rewrite the length of the angular momentum I as a function of the spherical
coordinates

P=P+2+12

= — hz{ <sin cp—é% + cotfcos w—é%) (sin 4,0—3% + cotf cos w%)

+(-—cos ?—+cot98in —8—)
& oy (1.20)

X | —co —a—+cot08in 9 +—-—a—2—-

Y Yoo ) " 5p2
1 0 0 1 &

= K2}~ {enfh— —_

=—h {sin@ a0 (Sm069> e 3902} '

We now determine the angular momentum eigenfunctions starting from
(1.15,20). Using a separable form

Y(0,9) =D(p) - O0) , (1.21)

one gets the two differential equations

2o

W+md5—0, (1.22)
1 d/. ,d m?

g‘i'ﬁ—é zi—é (sm 9~d—é@) — sin269 +2@0=0. (1.23)

In order to obtain these two equations, one uses a separation method for the
variables 6 and ¢ as is discussed in introductory courses on quantum mechanics
(Fliigge 1974). The solutions to (1.22), using the condition of uniqueness of the
solutions, become

P(p)=e™" m=0,+l,+2,.... (1.24)
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Putting now A = [(l + 1) and £ = cos @, one recognizes in (1.23) the differential
equation for the associated Legendre polynomials P/ (Edmonds 1957), i.e., one
has (0 < |m| < 1)

m/2 d™
P =(1-¢€) /2d€sz(€), (1.25)
with
1
P© = 5 dgl (5 ~1). (1.26)

(P, are the Legendre polynomials).
Finally, the solution to (1.15) becomes

Y™, ) = \/ @+1) ((l - m)!)(—l)m ™% PI™(cos ) , (1.27)

47 (+m)!

with correct angular normalization, and using m > 0. For negative values of m,
one has the relation

Y, ™0, 0) = (= 1)V, 0)" .

These functions are well known as the spherical harmonics. Using the above
solutions, the angular momentum eigenvalue equations can be written

Y™, ) = P21+ DY™(6, ), (1.28)
LY™(0,9) = hmY™(0,¢) . (1.29)
We give here some of the most used spherical harmonics.
1
V0= — 1.30
Var (=0
3
P =4/ - cost,
T (1.31)
il =F —?’—eii"’ sinf ,
T
Yy =4 — > (3cos?6 — 1)
167
15

= F4/—e*¥ cosfsinb , (1.32)
T

Y;':i:l
15 :
+2 _ +2ip .2
\/—-—*3271_6 sin“ @ .

In Fig. 1.2, we illustrate some typical linear combinations, which are called the
s, p and d functions (Weissbluth 1974). These functions play a major role when
describing electronic bonds in molecule formation. These are the combinations
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dy2. 42

Fig. 1.2. Polar diagrams for s ( = 0), p (I = 1) and d (I = 2) angular wave functions. These represent
real combinations of the Y, Y} and Y;* spherical harmonics. The figure is taken from C.J. Ballhausen
and H.B. Gray “Molecular Orbital Theory”, W.A. Benjamin, Inc.
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s=VarYy ,
Ly ) -z,
\/47T\/:L Yl +Y!
Pz = \/ 3Y1 r=z,
dzz-.:,/“”YO 2=1(3z2-r2), (1.33)
5 2
dmzy2=\/47r\/i<y;_ +Y," ) ;ﬁ(z -7,
\/47r\[ Y2+Y r—\/—a:y,
[Am |1, -
dy, = —5—\/;1(1721+Y'21)-r2=\/—3_yz,
4 1
zx=\/—57£\/;(—Y21+Y2_1)-r2=\/§zw.

The angular momentum eigenfunctions are a set of orthogonal functions on the
unit sphere expressed by

27 s
/ / Y™ (8, o)Y, (8, @) sin 0 df dep = 611/ S - (1.34)
0 0

Also, an addition theorem exists

+[

4
T Z Y™ () Y™ (22) (1.35)

Pl (COS 912)

where (2, {2, are the angles (01,p1), (62,52) defining the two directions and 6,
is the angle between the two direction vectors §2;,§2,.

We now introduce angular momentum ladder operators [+, operators that are
linear combinations of the operators [, [, but are very useful in setting up the
angular momentum algebra relations. Defining

ly =1l +ily , (1.36)

we shall determine the action of these ladder operators acting on the spherical
harmonics. Therefore, we just need to evaluate the commutation relations of the
ladder operators among themselves and with /,. One can easily evaluate that

[, 1) =2R,, [LybL]=H, [L,1-]=-h. (1.37)
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Using the spherical coordinates and the explicit forms of I, Iy, I, (1.17-19), one
can rewrite [, [_ and [, as

l, = he? (i +icot0—8—>

00 Op
. 0 0
— _he-ip[ L — 1.38
I_ he (89 1cot08(p> (1.38)
.. 0
lz-——lh'é‘(;.

Knowing the explicit form of the spherical harmonics Y;™(0, ), the action of the
operators [+, [, on these functions can, in principle, be calculated in a straightfor-
ward but tedious way. We shall discuss a more elegant method in evaluating the
action of [+ on the spherical harmonics. We start from the eigenvalue equation
(1.29) on which we act with the operator [, giving

LLY™(0,0)=mALY™6,p) . (1.39)
Now, using the commutation relations (1.37), this relation can be rewritten as

LLY™(0,0) = (I, — B)LY;™(6,0)=mhL,Y™0,¢), (1.40)
or,

L (LY 0,9)) = m+ DA(LY™0,9) - (1.41)

This indicates that [,Y;™(8, ¢) is an eigenfunction of the operator [, with eigen-
value (m + 1) and thus the ladder operator [, effectively adds one unit & to
the original m-projection. Likewise, [_ subtracts one unit 7~ from the original
m-projection and gives

L(1LY"0,9) = (m - DA(LY"0,0)) (1.42)
This allows for the relations

LY™(8,0) = al, )Y (8, ¢)

1_Y™(8, ) = B, m)Y™"'(0, ) .

The factors a(l, m), B(l, m) can be determined by calculating the norm of expres-
sions (1.43). Thus,

(1.43)

/ Y™ (0, Q)L Y (0, 9)d82 = |ad, m) | (1.44)

since the spherical harmonics form an orthonormal set of eigenfunctions. We can
now evaluate the operator expression [_l, explicitly as follows. We start from

P=D2+02+2=1d_+1_L)+1, (1.45)
and using the commutation relations (1.37), this simplifies into
P=1_l,+1,(l,+R), (1.46)

giving rise to the equality
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Il = =1,(I,+ h) . (1.47)
Here, one also needs to impose the conditions

LY =1_Y7 =0.
This relation (1.47) used in (1.44) gives the result

R +1) — m(m + D] = |, m)|? , (1.48)
or

LY™(0,0) = R{I(1+ 1) — m(m+ DY Y16, ) . (1.49)

Similarly, for the other ladder operator [_ one has

Y0, ) = K{I(+1) — mim — DY*Y™10, ) . (1.50)

1.2 General Definitions of Angular Momentum

In Sect. 1.1, we have derived the angular momentum operator I(I., l,, l,) explicitly,
starting from the one-body central force problem. This method only allows for
entire values of the angular momentum eigenvalue [ and m. It is now possible to
define angular momentum in a more general but abstract way starting from the
commutation rules (1.7,9). If we construct general operators J JG = ,Y, 2)
which fulfill the relations

[Jz, Jz‘] =0 (i=z,9,2),
s, Jy] =iRJ;,,

(1.51)

and cyclic permutations, the operator J 2 defines a general angular momentum
operator. The eigenvectors are now defined as the abstract vectors in a Hilbert
space carrying two quantum numbers, i.e., the quantum number defining the length
j and the quantum number defining the projection of j(m), since the quantum
numbers corresponding to the full set of commuting operators define the state
vector uniquely. Thus, we have the eigenvector relations

J2|j,m) = RBj + Dlj,m) , (1.52)

Jz|j,m) = hmlj,m) . (1.53)
Using the ladder operators, we can also write

Jxlj,m) = A{§GG +1) = m(m + D}j,m + 1), (1.54)

Jzlj,m) = hm|j,m) , (1.55)

as the defining expressions for a general angular momentum operator.
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1.2.1 Matrix Representations

In the discussion of Sect. 1.1, the angular momentum operators had an explicit
expression in terms of the coordinates and derivatives to these coordinates (differ-
ential form). In the more general case, as discussed above, we can derive a matrix
representation of the operators J, Jy, J, or J,, J_, J, and J 2 within the space
spanned by the state vectors |j, m). As an example, we use the five state vectors
|7, m) for the case of j = 2(—2 < m < +2). We denote the state vectors in column
vector form as

1 0 0
0 1 0
0y, (O],..., |0}, (1.56)
0 0 0
0 0 1

lj’2>’ Ual>a~--a IJa_2>

The action of the ladder operators now leads to
Jilg,m) = ammarlf,m+1) (1.57)

where a,, 541 defines the following matrix representation of J,, i.e.,

0 az20 0 0 O
0 0 a3 0 O
J.=10 0 0 as4 0 . (1.58)
0 0 0 0 as
0 O 0 0 0

Similarly, one gets a matrix representation for J_ following from
J—lj)m>:brh,'rh-l|jvm_“ 1) ’ (159)
and for J, since

Jzlgym) = Bmbpm ms|J, m) . (1.60)

1.2.2 Example for Spin % Particles

The angular momentum representation for spin % particles (electron, proton, ...),
using the general method as outlined in Sect. 1.2, now gives in a simple application
the construction of the 2 x2 spin matrices. We briefly recapitulate the spin % angular
momentum commutation relations.

[s4y 5] =2hs,, [s;, 8] =hsy, [ss 8-]=—hs_. (1.61)
Defining s = i/20, these commutation relations become

[a+, o_] =40, , {oz, a+] =20, , [az, a_] =—20_. (1.62)
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The matrix representations are spanned in the two-dimensional space defined by
the state vectors

oNG

which correspond to the states |3, +1) and |5, —3), respectively. One often denotes

the former by y +{ /2 OF a(s) and the latter by Xl/ 172 OF [(8) in literature on angular

momentum (Edmonds 1957, de-Shalit, Talmi 1963, Rose, Brink 1967, Brussaard,
Glaudemans 1977). The ladder operator relations (1.54) for the specific case of
spin 1/2 particles become

wlb 4=,

(1.64)
3—‘2’ 2>’ hlz’ "%
or
0-+!_12-’ ~l _2‘%’ (1.65)
‘7—|2v 2|2’

One 1mmed1ately gets the o, oy and o, “operators” as

O'mE((l) é), 0y5<? Bi), O'ZE((I) _01> (1.66)

Finally, we give a number of interesting properties for the Pauli spin 5 ! matrices
without proof:

2

r=os=1, (1.67)

hol=o0
where 1 denotes the 2 X 2 unit matrix.

i) {0z, 0y} =0, (1.68)
and cyclic where {A, B} is the anti-commutator defined as AB + BA.

iiiy(oc- A)o-B)=A-B+ioc-(Ax B), (1.69)

if both A and B commute with o.

1.3 Total Angular Momentum for a Spin 1 Particle

The total wave function characterizing a particle with intrinsic spin % (electron,
proton, neutron, ...) which, at the same time, carries orbital angular momentum
can be written as the product wave function

o(r,o) = w(lml, %ms)

(1.70)
= Ru(MY;™ (6, p)xi2(0)
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where R, ;(r) describes the solution of the radial Schrodinger equation (1.18)
using a given potential U(r), n describes a radial quantum number counting the
number of nodes, and [ the orbital angular momentum eigenvalue. Furthermore,
Y™ (8, ) (with —I < m; < +I) describes the angular part of the wave function
and X:,{f(a) (mg = :i:%) the intrinsic spin wave function. Since X%f can be written
as a state vector in a two-dimensional space, it is more correct to speak of (1.70)
as a state vector than as a wave function.

The following eigenvalue equations are fulfilled for the state vectors (1.70):

l%p(Zml, gms) = R+ l)w(lml, %ms) :

L (tme, dme ) = hmup (tm, 4 )
. (lml’%ms) s (lml’ %ms) | (1.71)
sz (bmy, dm, ) = gy, dm, ) -
We now define the operator
J=l+s=1+ k)20 . (1.72)

Using the definitions for a general angular momentum operator (1.51), one can
show that the operator J(J 2, Jzy Jy, J2) is indeed an angular momentum operator
since the commutation relations

[Joy Jy] =iRT5 oo

[JZ, Ji} _0. (1.73)
hold (verify this explicitly).

By construction 12, 1,, s? and s, form a set of commuting operators (the orbital
angular momentum operators and the intrinsic angular momentum “spin” operators
act in totally different spaces, the former in the space of coordinates (x,y, 2), the
latter in an abstract space, spanned by the unit vectors x%f).

One can now show that the operators J 2, Iz, 1? and s? also form a set of
commuting operators indicating that it is also possible to describe the full state of
the particle with orbital and intrinsic spin in a basis characterized with quantum
numbers relating to J 2 J,, I? and 82, respectively. Since J, = [, +s,, in the above
case, a fixed m-eigenvalue will occur but not necessarily a fixed m;, m, value.
This follows from the fact that J* does not commute with [, or with s, but only
with the sum [, + s,. (The proof of this is left as an exercise.)

We now study the effect of acting with J 2 on the state vectors that are eigen-
vectors of the “uncoupled” (lz, l,, 82, s,) basis. Since one can write J 2 as

J2=1+8%+20,8, +l,s_ +1_s,, (1.74)

acting on the vectors ¥(lm;, %ms) one obtains
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T (tmy, Sy ) =R+ 1)+ § + 2mumg by (1, S,

+a¢(lml #1, Im, - 1) +ﬂ¢(lml _1, %ms+l) :
(1.75)

From (1.75) it becomes clear that the eigenvectors ¥(Im;, %ms) are not in general
eigenvectors of J?, although they are eigenvectors of 12, s2 and J,. The right-hand
side of (1.75) represents a 2 x 2 matrix spanned by the configurations 1(Im;, %m s)
with a fixed value of total magnetic quantum number m (= m; + m,). By diago-
nalizing this matrix one obtains two eigenvalues of j, i.e., j = l+% and j=1[— %
Of course, in the two extreme cases (see the problem set) 7 = [ + L m=1+ %
and j =1+ 4, m = —| — 1, only one component, ¢(l,m; = [, 5, m; = +3) and
Y(l,my = =1, %, my = —1), respectively, results.

As an example, we take the case of [ =4, s = % that can be combined to form
both the j = § and j = 7 total angular momenta. The states obtained are

(1.76)
- _1 :_9 . __9
1/J<l—4, S—Q,J—z,m——g)
=p(1=4,m=—4,s=14,m,=-1})
In general, the eigenvectors of J2, J,, I2, s2, denoted by ¥(ls = %, jm) can be

expanded in the eigenvectors of 1%, I,, s2, s, that are given by ¥(lmy, % ms) as
follows:

(ls=1,dm) = 3 (imi, Smelis = &, jmip (tnu, 3m, ) (177)
my,Ms

The coefficients that establish the transformation of one complete basis to the
other complete basis (Im;, %ms|ls = %, jm) are denoted as Clebsch-Gordan
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Table 1.1 Analytic expressions for the Clebsch-Gordan coefficients appearing in (1.79) for coupling the
orbital angular momentum [ with the intrinsic spin s = 1/2 to a total angular momentum j =14 1/2

Mg = —
1/2
l+1/2+'rn l+1/2—-m
T2+l 20+ 1

1/2
l+1/2-m _[1+1/2+m
20+1 2l +1

(Clebsch 1872, Gordan 1875) or vector-coupling coefficients. In the new, “cou-
pled” basis of (1.77) one has the following eigenvalue relations

Mlv—
[ S

l(l+1)w( %m),

(1.78)

Written explicitly, the total state vector for a spin s = —% fermion particle becomes
7,[1<nls = %, jm) =Rnl(7‘){(lm ——%, % +%

+{m +1, 3 =113, im)Y,

m 1/2 1/2

(0, 9)x,1/2(0)

6o @]
(1.79)

m+1/2

with the (...|...) Clebsch-Gordan coefficients given in Table 1.1.

1.4 Coupling of Two Angular Momenta:
Clebsch-Gordan Coefficients

In this section, we concentrate on the coupling of two distinct angular momenta,
but now for the more general case of angular momentum operators J;, J, that
may have an m-projection J ., Jo, representing both integer or half-integer values.
In that case, the total angular momentum operator is expressed by the sum J =
J1 + J,. The set of four commuting operators

{J%, Tiay J2, Jzz} : (1.80)

are characterized by the common eigenvectors, expressed by the product state
vectors
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|71y, jama) = |jima)|jama) - (1.81)

The other set of commuting operators
{72 0., 33, 73}, (1.82)

can also be characterized by a set of common eigenvectors, being linear combina-
tions of the eigenvectors (1.81), such that they form eigenvectors of J 2, One also
denotes them as the “coupled” and “uncoupled” eigenvectors that are related via
the expression

s gmy = D> (ima, amaldida, jm)|ima )| jama) - (1.83)
myp,my
(my+my=m)

The overlap coefficients (... |...), going from one basis to the other are called
the Clebsch-Gordan coefficients. To simplify the notation one frequently uses an
abbreviation in the ket side of the bracket, i.e.,

(fimi, jamaldiga, Jm) — (jima, Jamalim) . (1.84)

In order to determine the relative phases for the Clebsch-Gordan coefficients, we
shall use the Condon-Shortley phase convention (Condon, Shortley 1935, Edmonds
1957), which is basically defined as follows.

i) When acting with the ladder operator J on the eigenvectors [j172; jm), we
define the phase as

Tiligas jmy = € B(G T m)G £ m+ 1) |jijas jm £ 1), (1.85)

with ! = +1.
i) By acting with the operator J 2 (J = J{+J>) on the states with the extreme
projection quantum number M = j; + j, or M = —j; — j,, one gets the result that
T jvd2s gm = £(ji +j2)) = (1 + 52) (41 + G2 + 1) Wi g2, Jmo= £(j1 + j2))
(1.86)
indicating that the state in (1.86) is an eigenstate of J* and J, with eigenvalues
(j1+752)(J1 +j2+1) B? and M = = A(j; +7,), respectively. Thus we get, by applying
(1.83) for this particular case
15255 = 71 + Jo, m = £(j1 + 12))
=e'“ |jim1 = £J1)|j2, m2 = £32) , (1.87)

which, with the choice e'® = +1, gives the aligned Clebsch-Gordan coefficients

(i = £j1,Jama = £hlj = ji + o, m=x(j1 + J2)) =+1 . (1.88)
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iii) By acting now with the ladder (lowering) operator J_ = J;_ + J>_, on
(1.87), and relating that result to the explicit form of the state vector (1.83) with
J=J+j,m=7j1+j —1; we get

J_|jij2; 3= 51+ ja, m= g1+ j2) = (Ji= + Jo=) |1, mu = 1) g2, ma = 1)

(1.89)
and
hjsi=hi+ti,m=5+j—1)
= (i1 — L, jodold = 51 + J2, m = 1 + 52 — D|j1, 51 — 1)|52, 52)
+ (J1J1, 5272 — U7 = J1 + Jo, m=J1 + Jo — g1, ji)lja, G2 — 1) -
(1.90)
This leads to the identification
. . . s )2
(11 = 1, j2dald = 1+ d2, m=ji + 2 = 1) = (51 /(G + 2) /
R S .. Y
(i, J2dz — 1j = g1+ o, m = J1 + 2 — 1) = (32/ (1 + 52)) 2. (1.91)

With the value of m = j; + j» — 1, another state can be constructed, i.e.,
|7 =41 +72—1, m = j; + j» — 1) which should be constructed from the same
uncoupled states that appear in (1.90). By imposing the condition of orthogonality,
one can deduce both the absolute value and the relative phase of the Clebsch-
Gordan coefficients

(hh — 1, fadali=gi+da—1,m=51+5—1), and (1.92)
(Gij1, Jaja = lj=fi+fo—1, m=g1+j2—1).

The absolute phases are now defined by the condition that for any given total J
and projection M one has

(IM|J1,|J =1, M) >0. (1.93)

This condition, written out for the Clebsch-Gordan coefficients making up the
states |JM) and |J — 1, M) becomes

Z my (Jimy, jama| I M) (jimy, jama|J — 1M) > 0. (1.94)

my,my

The above condition (1.94) can be shown to be equivalent to the condition (Brus-
saard 1967)

(1j1,jod — 1|, M =J) >0  foreach J. (1.95)

These are now the phase conditions of (i), (ii) and (iii) that uniquely define the
Clebsch-Gordan coefficients and thus also the coupled state vectors of (1.83).
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1.5 Properties of Clebsch-Gordan Coefficients

Since the Clebsch-Gordan coefficients serve as expansion coefficients for a given
eigenvector in a specified ortho-normal basis, there exist orthogonality relations
that are given by

> (i, famalim) (ima, famali'm’) = 6;56mm: ,  and

my,m3

. ) . T (1.96)
Z(Jlmla]2m2l.7m> (Jlm17.72m2l.7m) = 6m1m; 6m2m:’,_ .
jm
Interesting symmetry relations exist when interchanging the two angular momenta
that become coupled, e.g., (de-Shalit, Talmi 1963)

(jima, jama|jm) = (= 1Y+ 273 (Gymy, jimy|jm) (1.97)

In interchanging either j; and j or j; and 7, more complex relations result, since
angular momenta are coupled in a certain ‘direction’ e.g. j; with j, to form the
angular momentum j and in that order. More symmetric ways of coupling can be
made.

Two angular momentum states |jm) can be coupled to a total angular momen-
tum of zero. The normalized state then becomes

o) = > (25 + D™VA(=1)"™ 5, m)|j, —m) . (1.98)
m
Using the Wigner 1j-symbol (Brussaard 1967, Wigner 1959)
(min,) = (=16, = (=1 S (1.99)
it follows that the combination
. 1/2 _ j . .
@i+ D2 Bo) = > (mlmz) lgm1)|ima) (1.100)

my,my

forms an angular momentum invariant.

Using the same method, one can construct out of the three subsystems j;, j» and
j3 a system with total angular momentum zero. The state vector thus constructed
becomes '

- oo J2 33\ . . :
Ty = > (ml ™y m3>lilm1>bzmz)ly3m3), (1.101)
my,m2,Mm3

with the coefficients (), the Wigner 3j-symbols (Wigner 1959, de-Shalit and

Talmi 1963, Brussaard 1967). By constructing the state |¥) by first coupling
the individual angular momenta j; and j, to an angular momentum j; and then
subsequent to the third angular momentum 73 to form a state of total angular
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momentum zero, a relation between the Wigner 37-symbol and the Clebsch-Gordan
coefficients is obtained. This relation is given by

. . . (_1)j1"‘j2-m3 ) . .
(vzzll 73122 7?3):““‘“‘_“\/7];—;—1 (Jim1, jamaljs —m3) , (1.102)

symmetry properties under the interchange of any two angular momenta of the set
(J1, 72, j3) become very simple:

hod2 BN_(J B nN_(B R
m; My M3 mo2 M3 1My m3 MmMp My

— (_1)j1+j2+j3 ( jl j3 j2 )

m; msz My

- (_1)j1+.7'2+j3 ( VERR R} ) =..., (1.103)

ms3 My Mmy

or, a phase factor +1 for an even permutation and a phase factor (—1)7+72+3 for
an odd permutation. Moreover, one gets the relation

( J1 J2 J3 )z(_l)j1+jz+j3<j1 J2 j3> _ (1.104)

—-mp —Mmy —M3 my My M3

The former orthogonality relations (1.96) for the Clebsch-Gordan coefficients now
rewritten in terms of the Wigner 3j-symbols become

g2 3 giood2 g N__1 o o

my,my
. . N2
Z (]1 J2 J3>:1’ (1.106)
m; My M3
my,m2, M3
- h J2 I3 1 J2 g3\ _
Z(2ﬁs+1)(ml e m3> (m; o m3>—5mlm;5m2m;-
J3,ms3

(1.107)

Extensive sets of tables of Wigner 3j-symbols exist (e.g. Rotenberg et al. 1959).
Explicit calculations of the Wigner 3j-symbol are easily performed using the
expression (de-Shalit, Talmi 1963).

(,3;1 ke 7353)=6m,+m2,_m3(((j1+jz—j3)!(jz+j3—jl)!

X (.73 +jl _32)')/(]1 +j2+j3+1)!)1/2
X ((g1 +m1) (g1 — m1) (g2 + m2) ! (G2 — m2) (g3 + m3) 1 (J3 -—m3)!)1/2

X 3 (=1 TP (L () + Gy — 3 — £)1(j3 — Ja + +2)!
t

x (s = j1 — ma + )Gy —ma — )1 (a +mp — £)1) . (1.108)
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with (—m)! = 0 if m is positive, ¢ is entire and 0! = 1, so the following conditions
hold
t>0
Nitj—Jz =t
—j3tja—my <t
J3T I = (1.109)
—pB+ji+my <t
Ji—mp 2t
jz +my > t.

In Chap.9, a FORTRAN program is given that evaluates (1.108) numerically. As
an example, we evaluate the 37-symbol

J 1 7
-m 0 m)/
The conditions (1.109) give the restrictions on ¢

t>0;1>t; —3+1+m<t;0<¢;
j+m>t; 1>t or t=0,1.

Calculating in detail, one gets

(j ! j>=(<2j—1>!/(2j+2>!)‘/2

-m 0 m
x ((G = m)(G +m)(G +m)( — myn)'"?
X (1Y (G = 1 =m)lG +m)) ™ — (G —m)G +m— D)

= (1Y ~™m/ (GG + DG+ D)2

1.6 Racah Recoupling Coefficients:
Coupling of Three Angular Momenta

In the case of a system described by three independent angular momentum op-
erators Jy, J,, J3; one can again form the total angular momentum operator J
defined as

J=J1+J2+J3. (1110)
The six commuting operators

{J%ale,J%3J2zaJ§)J3z} ) (1111)
have a set of common eigenvectors, the product vectors

|71ma) | jama)|jzms) (1.112)
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For the three angular momentum operators, it is now possible to form three sets
of commuting operators:

{Jz, Jz,J%,Ji,Jﬁ,J%Z} : (1.113)

{Jz, Jz,J?,Ji,JiJé} : (1.114)

{920, 90,33, 93, 75} (1.115)
with the eigenvectors

|(172) J1ag3; IM) (1.116)

|71 (4273) Ja3;s TM) (1.117)

|(j173) J13d2; TM) (1.118)
respectively.

It is possible to use a diagrammatic way of expressing the vector coupled
eigenstates (Brussaard, Glaudemans 1977), by using lines and arrows for a given
angular momentum and the order in which they are coupled. The intermediate
angular momentum is shown by the dashed line (Fig. 1.3).

Fig. 1.3. Graphical illustration of two possible ways to construct the angular momentum wave functions
for a system where three angular momenta are used, according to (1.116) and (1.117). The angular
momenta are represented by vectors, the intermediate momenta by dashed-line vectors

Between the three equivalent sets of eigenvectors of (1.116-118), transforma-
tions that change from one basis to another can be constructed. We can formally
write for such a transformation (de-Shalit, Talmi 1963)

71 (4273) Jo3; TM) = Z((jljz) J2gs; J|g1 (G23) Jo33 T )
Ji2

X |(j142) J123; TM) . (1.119)

It can easily be shown that the transformation coefficients in (1.119) and in similar
relations do not depend on the projection quantum number M. Now by explic-
itly carrying out the recoupling from the states |j;(j243)J23; JM) to the coupling
scheme |(j172)J1273; JM) (Appendix B), one obtains the detailed form of the
recoupling coefficient of (1.119). In this particular situation, a full sum over all
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magnetic quantum numbers of products of four Wigner 3j-symbols results. The
latter, defined as an angular momentum invariant quantity (no longer dependent
on the specific orientation of a quantization axis), the Wigner 6;j-symbol, leads to
the following result (Wigner 1959, Brussaard 1967)

(31 (d273) Ja35 J| (J1d2) Jizgss J)

A S
= (=14 f) {7.‘ 2 } : 1.120
(=1 2B T g, ( )
(using the notation J = (2J + 1)1/2).

The precise definition of the 67-symbol in terms of the 3j-symbols reads (de-
Shalit, Talmi 1963)

g2 g3l _  N\SjitSlL+Emeasml (N T2 I3
{ll I l3} Z =1 (ml ma m3)

all m;,m/

J1 b l3 L J2 l3 b 3 J3
X ! ! / ] ! /
—my; mh  —mj —m} —my; m m), —-mh) —m;

(1.121)

and very much resembles a “contraction of tensors” (one sums over projection
quantum numbers my,my, ..., mj, both of which always show up in different
3j-symbols with opposite sign). We show in Chap. 2 that, indeed, the 6j-symbol
is a full contraction not on cartesian but on spherical tensors (Wigner 1959).

1.7 Symmetry Properties of 65-Symbols

Because of the very structure of the definition in (1.121), in each 6j-symbol four
angular momentum couplings have to be satisfied in order to be non-vanishing. In
shorthand notation, replacing the angular momenta with dots, one has the couplings

{\ }{ /\} (1.122)
Here we quote some often used symmetry properties. A more detailed account

can be found in various texts (de-Shalit, Talmi 1963, Edmonds 1957, Rose, Brink
1967, Brussaard 1967, Brink, Satchler 1962)

. g2 B3
) {ll ; 13}‘0’ (1.123)

unless the triangular (coupling) conditions (j17273), (J1lal3), (Lilag3), (L152l3) are
fulfilled
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i 49 Bl _lr s onl_[n B3 I
L b s b I3 [ Lh 3 I

h L 5 } {jl lh I }
=9 . . = . D= ..., 1.124
{.71 J2 3 i 72 Js : ( )

iii) orthogonality relation

Serenf) 1} {3 1 4)-bwerer. ams
J

iv) special case

J1 Jé J3 :(_1)j1+j2+j3(313'2)_15. 8 it (1.126)
j2 j{ 0 21317323, 0 ’
v) Explicit form: Racah formula (de-Shalit, Talmi 1963)
{Jlljj{j } = A(j15273) A(ilals) Al als) A (i)
X Z(—l)t(t + Dt —g1—ga— )t —d1 —la— 13)!
t
X (t——ll — J2 ~l3)!(t—l1 — 1 -—j3)!(j1 + i+l +1 —t)!
X (_72 +j3 +l+13 — t)!(jy, +j1 + l3 + l] - t) !]_1 s (1.127)
with
AGabe) = [(a+b— O)lb+c—a)lc+a— b /(a+b+c+ D2, (1.128)

and the condition of having non-negative values of the integer in the factorial
expression in (1.127).

1.8 Wigner 9;5-Symbols: Coupling and Recoupling
of Four Angular Momenta

Similarly to the methods used in Sect. 1.6, we can construct the total angular
momentum operator corresponding to the sum of the four independent angular
momentum operators as

J:J1+J2+J3+J4. (1.129)

In constructing the total set of commuting operators one has in the uncoupled
representation,

{J%V]lZaJ%a J2Z’J§7']323J%,J4z} 3 (1130)
which have as eigenvectors the product vectors

|71ma)|dama) [Jama )| Gama) - (1.131)
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In the coupled representation, one needs two intermediate angular momentum
operators for which a large choice exists. Coupling pairwise, one has three possi-
bilities
2 2 72 52 2 32 2
'] anvJ12aJ34leaJ2,J3aJ4 ]
2 2 12 72 12 72 2
I I I3, I, I, I35, I3, J 5, (1.132)
2 2 12 12 12 712 12
J bl ']z’ J147 J237 Jla J27 J3a J4 ]

(Fig. 1.4), with eigenvectors

|(412) 12 (53a) J343 M)
|(7173) J13(j2s) Joas T M) (1.133)
|(jiga) J1a(j2gs) Jo3; TM)

respectively.
There exist other possibilities, too, however, such as

J2, T, I3, T3, I3, T3, T3, T2 (1.134)

shown in Fig. 1.4. The latter method is probably the best adapted to extend coupling
to n angular momenta by successive coupling of an extra angular momentum to
the former n — 1 system (Yutsis et al. 1962). Here, too, many possible recoupling
schemes and recoupling coefficients can be obtained (Edmonds 1957). Here we
only discuss recoupling between the states of (1.133) since they lead to the Wigner
97-symbol, e.g., (de-Shalit, Talmi 1963)

Fig.1.4. Graphical illustration of possible ways to construct
the angular momentum wave functions for a system where
four angular momenta are used, according to (1.133). In the
lower part, we present the more general way of constructing
the four-angular momentum system by specifying Ji;, Jia3 as
intermediate angular momenta, respectively
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|(5173) J13 (G2da) Joa; M) = Z JisJadin s
Ji2,J3

o J2 Ji2

X { J3  Ja Ju } |(512) J12 (G3ja) Jaas TM) . (1.135)
Jiz Ju J

Precise definitions of the Wigner 9j-symbol as a full contraction over products of

6 3j-symbols can be found (Edmonds 1957, de-Shalit, Talmi 1963). In the present

context, where we shall concentrate on the nuclear shell model, we quote a special

case that often occurs:

N (g d
{;; jz k}=(—1)72+"”3+"’,]k Js Ga J S (1.136)
k kO

Also, we point out that the general expression of (1.135) can be used when re-
coupling from a (j j) coupling basis into an (L.S) coupling basis if we consider
cases with two fermions. Thus one can relate the states |(1;1,)L(3 3)S; JM) and
|(l1%)j1(12%)j2; JM) by the transformation

(b L L
(k)L (5 3) S; M) ZLsmz{- ! S}
Juga g2 J

X |(114)31 (123 s TM) (1.137)

a relation that gives the (57) — (L.S) basis transformation.

1.9 Classical Limit of Wigner 3j7-Symbols

It is now possible to construct a classical (in the limit of large angular momenta)
model (Brussaard, Tolhoek 1957, Brussaard 1967) for angular momentum cou-
pling and thus also for the Wigner 3j- (and similarly for the 6j-, 95-, 3nj-)
symbol. We make use of the fact that in quantum mechanics it is only possible
to specify both the length and the projection on a quantization axis of the angular
momentum. Therefore, a precessing vector model results where for constant pre-
cession velocity the azimuthal angle has a constant probability distribution. Since
the Clebsch-Gordan coefficients denote the expansion coefficients in an orthonor-
mal basis, the square can be interpreted as a probability. Thus, for the uncoupled
representation where J %, Jiz, J % and J,, are the commuting operators, the coeffi-
cients |(j1m1, jama|jm)|* denote the probability that in a state with fixed (j;m;)
and (jom»), a given value of (5, m) will result with j expressing the length of the
angular momentum vector (correct only for large values of j), (Fig.1.5). Simi-
larly, |(j1m1j2ma|im)|? (Fig. 1.5) can be interpreted, for the coupled basis where
eigenstates of the operators J 2T, J f, J % are considered, as the probability that
for given (j, m) the values m; and m, will result as projection quantum numbers
relating to the angular momenta j; and j,, respectively. One can even calculate this



28 1. Angular Momentum in Quantum Mechanics

z-axis ‘

1]

Fig. 1.5. Graphical representation of two angular momenta j, and j,, shown as vectors that make a
precession around the z-axis with constant angular velocity (vector model). Using the addition to a
momentum J = j, + J,, the probability of obtaining a given value for the length j, given fixed m;

and m, values, is given by the Clebsch-Gordan coefficient squared I( jimy, jama|im > |2 If the two
vectors J; and J, are coupled to form the total angular momentum j (which is a constant of motlon)
the two vectors will make a precession around the direction of j. For fixed value of the length of J
and projection m, the projections m; and m, can be obtained again as a probability distribution given
by the Clebsch-Gordan coefficient squared | < jym;y, joma|im > |2

distribution in both cases from probability considerations (Edmonds 1957 gives
an explicit calculation). Extending the above arguments, classical models can also
be constructed for interpreting higher 3n — j symbols (Brussaard 1967).

Short Overview of Angular Momentum Coupling Formulas

One-particle central force motion-orbital angular momentum

Iz, ly,l, . differential operators

2] =0

[l 1;]  =iesn hly
L, 1-] =2hl,
:lz, l+] = hl+
1,,1-] =—hl_

Lelimy = B(I(+ 1) — mm £ 1) ,m £ 1) .
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via commutation relations

General definition of angular momentum operator

/\

Differential operator representation

Matrix representation

[=0,1,2,...

Total angular momentum

j=1l+s
J=J1+J2
{J%, Tz, J%,Jzz} and {Jz, J,, J2, J%}

i gm) = > (ima, famalim)|jima )| fame)

my,ma

ljima)ljama >= > (jima, amalim)|didas jm) -
Jjm

Three angular momentum systems

=J; +J2+J3
J3, Jizy I3, Jozy I35, J3z} — |jimi)|jama)|jams)

Ty, JE TR T, T3 — |(j172) J1273; M)

S I R P EX — |j1(j2d3) Jazs TM) .

{
{
{
{7

7 }
T Ty T, 35, T3, T ) |(jads) Juadas TM)
-
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Recoupling Wigner 6j-symbol

T R !
N
e

)

Notation:

e
e

4
e
7

Four angular momentum systems

J=J1 +J2+J3+J4
{J%a lea J%) J2Z7 Jga J327 Jia J4z}

Basis states — |7;m1)|j2ma)|j3ms)|jama)

2 2 72 12 2 two intermediate 2 2
{J ) J27 Jla J27 J35 J4 angular momen’[a}e'g’ JlZ’ J34

Basis states — |(J172) J12(j374) J343 JM) .

Recoupling-Wigner 95-symbol
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Notation:

Problems

1.1

1.2

1.3

14

1.5

1.6

1.7

1.8

1.9

Prove the relation that the square of the angular momentum operator 1% can
be written as (see (1.10,11, 12))

2_.2.2,320 (20
U"=r°p°+h 6r<r Br) .
Show that the operator J = I + s, where I describes the orbital angular
momentum operator and s the intrinsic spin angular momentum operator for
a spin 1/2 particle, constitutes an angular momentum operator.
Derive an explicit form of the 2P3/;,m = +1 /2 wave function in terms of
the spin and orbital angular momentum wave functions.
Show that the total angular momentum operator J 2 for a nucleon (obtained)
by coupling the orbital and intrinsic spin angular momentum operators can
be diagonalized in the basis |im;)|1/2m,). Determine the eigenvalues and
show that the corresponding eigenfunctions are also eigenfunctions of the
Hamiltonian H = Hy +al - 8 with
2

Hy = %n— + %mwzr2 .
Prove the orthogonality relations for the Clebsch-Gordan coefficients (see
(1.96)).
Show that the recoupling of (1.135) indeed leads to a Wigner 9 — j symbol
(with no extra phase factor).
Show that the recoupling coefficients {(j172)J123; JM|51(j2g3)Jas; JM),
which describe the transformation between states with different coupling
order in systems with three angular momenta, are independent of M.
Determine the relative weights for the S = 0 and S = 1 intrinsic spin com-
ponents in the |(1ds /2)2; J =2) two particle wave function.
Discuss the classical limit of the Wigner 6 — j symbols, according to the
methods of Sect. 1.9.



32 1. Angular Momentum in Quantum Mechanics

*1.10 Calculate the probability density P(j) (i.e. the probability that the length
of j lies between j and j + dj is P(j)dj) if we suppose that, according to
the upper part of Fig. 1.5, 7, rotates at a constant rate about the z-axis with
respect to j,. P(j) is then inversely proportional to dj/dt.

1.11 Prove the relation between the Wigner 3j-symbol and the corresponding
Clebsch-Gordan coefficient, as expressed in equation 1.102.

1.12 Determine the matrix representation of the angular momentum operators J ,
Jy and J, for angular momentum 3/2.

*1.13 Discuss, according to the method outlined in Sect. 1.9, the classical limit
for the Wigner 6;j-symbol. Construct the graphical representation similar to
Fig. 1.5 for the coupling of two angular momenta.



