Single pickup and delivery model with partial satisfaction

1 Mathematical Model

Sets:

V: Set of all locations (including depot 0).

Parameters:

 c_{ij} : Travel cost (or distance) from station i to j.

 S_i : Pickup demand at station i

 D_i : Delivery demand at station i

Q: Vehicle capacity.

 P_i^s : Profit for meeting each unit of surplus demand of station i.

 P_i^d : Profit for meeting each unit of deficit demand of station i.

Decision Variables:

 $x_{ij} \in \{0,1\}$ 1 if the vehicle travels from i to j, else 0.

 s_i The amount of met pickup demand of station i

 d_i The amount of met delivery demand of station i

 $l_i \geq 0$ Load of the vehicle after visiting station i.

 $l_0 \ge 0$ Initial load at the depot (decision variable).

 u_i Visit order of station i

Objective Function:

$$\max \sum_{i \in V} (P_i^s s_i + P_i^d d_i) - \sum_{i \in V} \sum_{j \in V} c_{ij} x_{ij}$$

$$\tag{1}$$

Constraints:

1. Vehicle Leaves and Returns to Depot

$$\sum_{j \in V} x_{0j} = 1 \tag{2}$$

$$\sum_{i \in V} x_{i0} = 1 \tag{3}$$

2. Flow Conservation (Continuity)

$$\sum_{j \in V} x_{ij} \le 1, \quad \forall i \in V \setminus \{0\}$$
 (4)

$$\sum_{j \in V} x_{ij} = \sum_{j \in V} x_{ji}, \quad \forall i \in V \setminus \{0\}$$
 (5)

$$s_i \le M \sum_j x_{ij}, \quad \forall i \in V \setminus \{0\}$$
 (6)

$$d_i \le M \sum_j x_{ij}, \quad \forall i \in V \setminus \{0\}$$
 (7)

3. Load Balance for Pickups and Deliveries

$$l_j \ge l_i + s_j - d_j - M(1 - x_{ij}), \quad \forall i, j \in V, i \ne j$$
(8)

$$l_j \le l_i + s_j - d_j + M(1 - x_{ij}), \quad \forall i, j \in V, i \ne j$$

$$\tag{9}$$

4. Load Capacity Constraints

$$0 \le l_i \le Q, \quad \forall i \in V \tag{10}$$

5. surplus and deficit demand boundaries

$$0 \le s_i \le S_i \tag{11}$$

$$0 \le d_i \le D_i \tag{12}$$

6. Subtour Elimination Constraints (MTZ Formulation)

$$u_j \ge u_i + 1 - (|V| - 1)(1 - x_{ij}), \quad \forall i, j \in V, i \ne j, i \ne 0, j \ne 0$$
 (13)

$$1 \le u_i \le |V| - 1, \quad \forall i \in V, i \ne 0 \tag{14}$$