Appendix 1 Function Description of Multi-segment Instructions

4 command multi-segment function terminals can be combined into 16 states, these 16 states correspond to 16 command setting values. The specific table is as follows

K4	K3	K2	K1	Instruction settings	Corresponding parameters
OFF	OFF	OFF	OFF	Multi-segment instruction 0	FE-00
OFF	OFF	OFF	ON	Multi-segment instruction 1	FE-01
OFF	OFF	ON	OFF	Multi-segment instruction 2	FE-02
OFF	OFF	ON	ON	Multi-segment instruction 3	FE-03
OFF	ON	OFF	OFF	Multi-segment instruction 4	FE-04
OFF	ON	OFF	ON	Multi-segment instruction 5	FE-05
OFF	ON	ON	OFF	Multi-segment instruction 6	FE-06
OFF	ON	ON	ON	Multi-segment instruction 7	FE-07
ON	OFF	OFF	OFF	Multi-segment instruction 8	FE-08
ON	OFF	OFF	ON	Multi-segment instruction 9	FE-09
ON	OFF	ON	OFF	Multi-segment instruction 10	FE-10
ON	OFF	ON	ON	Multi-segment instruction 11	FE-11
ON	ON	OFF	OFF	Multi-segment instruction 12	FE-12
ON	ON	OFF	ON	Multi-segment instruction 13	FE-13
ON	ON	ON	OFF	Multi-segment instruction 14	FE-14
ON	ON	ON	ON	Multi-segment instruction 15	FE-15

When the frequency source is selected as multi-speed, 100.0% of the function code FE-00%FE-15 corresponds to the maximum frequency F0-09. In addition to the multi-step speed function, the multi-step command can also be used as a given source of PID, or as a voltage source of V/F separation control, etc., to meet the needs of switching between different given values.

Appendix 1 Function description of acceleration/deceleration time selection terminal

Terminal 1	Terminal 1	Acceleration or deceleration time selection	Corresponding parameters
OFF	OFF	Acceleration and deceleration time 1	F0-13、F0-14
OFF	ON	Acceleration and deceleration time 2	F9-03、F9-04
ON	OFF	Acceleration and deceleration time 3	F9-05、F9-06
ON	ON	Acceleration and deceleration time 4	F9-07、F9-08

Code	Name	Range	Default	Modification
F6-05	DI filter time	0.000s ~ 1.000s	0.010s	☆

If the DI terminal is disturbed at the application site, the filter time can be appropriately increased; the longer the filter time, the slower the DI action response time.

Code Name Range Default Modification	Code	Name	Range	Default	Modification
--	------	------	-------	---------	--------------

F6-06	DI1 delay time	0.0s ~ 3600.0s	0.0s	☆
F6-07	DI2 delay time	0.0s ~ 3600.0s	0.0s	☆
F6-08	DI3 delay time	0.0s ~ 3600.0s	0.0s	☆
F6-09	DI4 delay time	0.0s ~ 3600.0s	0.0s	☆

After the terminal detects the input signal, it will respond after a delay of this time.

It is used to set the valid state mode of the digital input terminal.

0: When selected as active high level, it is valid when the corresponding DI terminal is short-circuited, and invalid when disconnected.

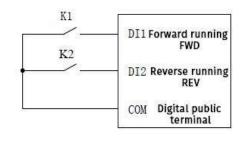
Code	Name	Range	Default	Modification
		0: Active high		
		1: Active low		
		Units digit: DI1		
F6-10	F6-10 DI terminal active mode options	Tens digit: DI2	0	*
		Hundreds digit: DI3		
		Thousands digit: DI4		
		Ten Thousands digit: DI5		

1: When selected as active low level, the corresponding DI terminal is invalid when short-circuited, and valid when disconnected.

number of digits	Ten Thousands digit	Thousands digit	Hundreds digit	Tens digit	Units digit
Defaults	0	0	0	0	0
Corresponding terminal	DI5	DI4	DI3	DI2	DI1

Code	Name	Range	Default	Modification
		0: Two-line mode 1		
FC 11	Terminal command	1: Two-line mode 2		
F6-11	mode	2: Three-line mode 1	0	*
		3: Three-line mode 2		

This parameter defines four different ways to control the VFD to run through external terminals.

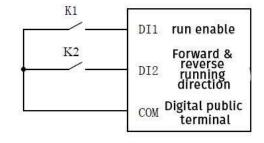

Note: For the convenience of description, DI1\DI2\DI3 in the DI1-DI5 multi-function input terminals are selected as the external terminals. That is, the function of DI1\DI2\DI3 is selected by setting the value of F6-00 \sim F6-02. For details, please refer to function F6-00 \sim F6-04.

0: Two-wire mode 1: The most commonly used two-wire mode for this bit. The forward and reverse rotation of the motor is determined by DI1/DI2.

Code	Name	Setting value	Function description
F6-11	Terminal command method	0	2-wire mode 1
F6-00	DI1 terminal function selection	1	Forward running FWD

F6-01	DI2 terminal function selection	2	Reverse running REV
-------	---------------------------------	---	---------------------

K1	K2	Run command
1	0	FWD
0	1	REV
1	1	STOP
0	0	STOP

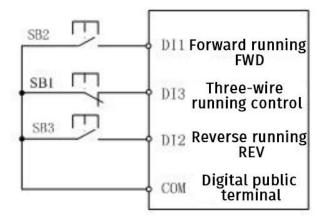

Two-wire mode 1

In this control mode, when K1 is closed, the VFD rotates forward, and when K2 is closed, the VFD rotates reversely. K1/K1 are closed or disconnected at the same time, and the VFD stops running.

0: Two-wire type 2: In this mode, the DI1 terminal is the running enable terminal, and the DI2 function is to confirm the running direction.

Code	Name	Setting value	Function description
F6-11	Terminal command method	1	two-wire 2
F6-00	DI1 terminal function selection	1	run enable
F6-01	DI2 terminal function selection	2	Forward and reverse running direction

K1	K2	Run command
0	0	STOP
0	1	STOP
1	0	FWD
1	1	REV

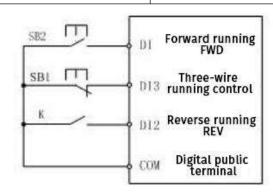

Two-wire mode 2

In this mode, when K1 is closed, K2 disconnects the forward drive of the VFD, and K2 closes the VFD in reverse. K1 is disconnected, and the VFD stops running.

2: Three-wire mode 1, in this mode, the D3 terminal is the enable terminal, and the direction is controlled by DI1/DI2 respectively. The settings are as follows:

Code	Name	Setting value	Function description
F6-11	Terminal command method	2	three-wire 1
F6-00	DI1 terminal function selection	1	Forward running FWD
F6-01	DI2 terminal function selection	2	Run REV in reverse
F6-02	DI3 terminal function	3	Three-wire running control

Three-wire mode 1


In this control mode, when the SB1 button is in the closed state, press the SB2 button, the VFD will run forward, and press the SB3 button, the VFD will run reversely.

When the SB1 button is disconnected, the VFD stops. During normal start-up and operation, the SB1 button must be kept in the closed state, and the command of the SB2/SB3 button will take effect in the closing action, and the operating state of the VFD is subject to the last status of the three buttons.

3: Three-wire mode 2: In this mode, DI3 is the enable terminal, the running command is given by the DI1 terminal, and the direction is determined by the state of DI2. The settings are as follows:

Code	Name	Setting value	Function description
F6-11	Terminal command method	3	three-wire 1
F6-00	DI1 terminal function selection	1	run enable
F6-01	DI2 terminal function selection	2	Forward and reverse running direction
F6-02	DI3 terminal function selection	3	Three-wire enable operation

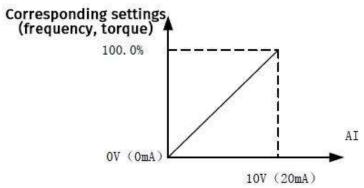
K	Running direction
0	Forward running FWD
1	Reverse running REV

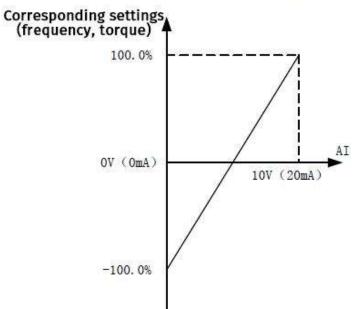
As shown in the figure above, in this control mode, when the SB1 button is closed, press the SB2 button to run the VFD, K disconnects the VFD to run forward, K closes the VFD to reverse; the VFD stops when the SB1 button is disconnected. During normal startup and operation, the SB1 button must be kept closed, and the command of the SB2 button will take effect at the edge of the closing action.

Code	Name	Range	Default	Modification
F6-12	Terminal UP/DOWN change rate	0.001Hz/s ~ 65.535Hz/s	1.000Hz/s	☆

It is used to set the change amount of the frequency per second when the UP/DOWN function is long-pressed to adjust the frequency.

Code	Name	Range	Default	Modification
F6-13	AI curve 1 minimum input	0.00V ~ F6-15	0.00V	☆
F6-14	AI1 curve minimum input corresponding setting	-100.0% ~ +100.0%	0.0%	☆
F6-15	AI curve 1 maximum input	F6-13 ~ +10.00V	10.00V	☆
F6-16	AI1 curve maximum input corresponding setting	-100.0% ~ +100.0%	100.0%	☆
F6-17	AI1 filter time	0.00s ~ 10.00s	0.10s	☆


When the analog input voltage is less than "AI curve 1 minimum input F6-13", the setting value of F6-23 will be selected according to the AI lower than the minimum input setting, and it will be determined that AI is equal to the "set AI curve 1 minimum input corresponding setting" F6-13, 100% corresponds to 10V, 0% corresponds to 0V" or "0%".


When the analog input voltage is greater than "AI curve 1 maximum input F6-15", it is determined that AI is equal to "set AI curve 1 maximum input corresponding to setting F6-16. When the analog input is current, 1mA current is equivalent to 0.5V voltage. .

AI1 input filter time is used to set the software filter time of AI1. When the on-site analog quantity is easily disturbed, please increase the filter time so that the detected analog quantity tends to be stable. If you want to slow down, how to set it needs to be considered according to the actual application.

In other applications, the 100.0% of the analog setting corresponds to the nominal value with different meanings, please refer to the description of each application section for details.

The following figure shows two typical settings:

Code	Name	Range	Default	Modification
F6-18	AI2 curve minimum input	0.00V ~ F6-20	0.00V	☆
F6-19	AI2 curve minimum input corresponding setting	-100.0% ~ +100.0%	100.0%	☆
F6-20	AI2 curve maximum input	F6-18 ~ +10.00V	2.80V	☆
F6-21	AI2 curve maximum input corresponding setting	-100.0% ~ +100.0%	0.0%	☆
F6-22	Potentiometer filter time	0.00s ~ 10.00s	0.10s	☆

同AI曲线1的讲解。

Code	Name	Range	Default	Modification	Code
		Units digit	AI1 curveselection		
F6-23	AI curve selection	1	Curve 1 (2 points, see F6-13 ~ F6-16)	21	☆
10-23		2	Curve 2 (2 points, see F6-18 ~ F6-21)		

3		Curve 3 (6points, see P3-04~P3-15)
Tens d	ligit	AI2 curve selection (same as the unites digit)

Set the input curve selection of AI1/2. The default 21 corresponds to the following:

Units 1 corresponds to AI1 selection curve 1 (2 points, see F6-13~F6-16)

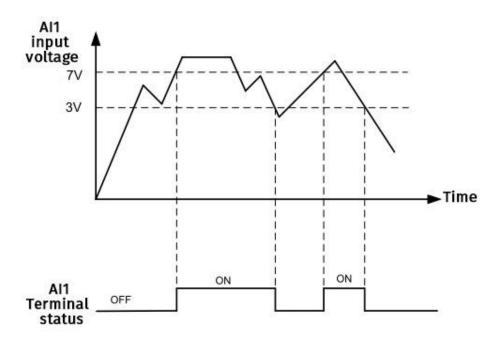
Tens place 2 corresponds to AI2 selection curve 2 (2 points, see F6-18~F6-21)

•	•				
Code	Name	Range	Default	Modification	Code
		Units digit	Option for AI1 lower than the minimum input setting		
	Options for AI lower than minimum input	0	Minimum input setting		
F6-24		_	0.0%	00	☆
		Tens digit	AI2 is lower than the minimum input setting selection (same as the unites digit)		*

It is set that when AI is less than the minimum value in the curve, it is determined that AI is equal to "corresponding to the minimum input setting" or "0%".

The units/tens from low to high correspond to AI1/AI2 respectively.

Code	Name	Range	Default	Modification
F6-26	PULSE minimum input	0.00kHz ~ F6-28	0.00kHz	☆
F6-27	PULSE minimum input corresponding setting	-100.0% ~ 100.0%	0.0%	☆
F6-28	PULSE maximum input	F6-26 ~ 100.00kHz	50.00kHz	☆
F6-29	PULSE maximum input corresponding setting	-100.0% ~ 100.0%	100.0%	☆
F6-30	PULSE filter time	0.00s ~ 10.00s	0.10s	☆


Same as AI curve and AI filter time.

Code	Name	Range	Default	Modification
	AI1 terminal	0: AI1 is analog input		
F6-31	F6-31 function selection	1~47: AI1 is used as DI digital input, the function is the same as F6-00	0	*
F6-33	AI1 as DI valid state	0: Active high	0	A
F0-33	selection	1: Active low] 0	*

Function code F6-31 is used to use AI1 as DI. When AI1 is used as DI, when AI1 input voltage is greater than 7V, AI1 terminal state is high level, when AI1 input voltage is lower than 3V, AI1 terminal state is low power flat. Hysteresis between $3V\sim7V$

F6-33 is used to determine when AI1 is used as DI, whether AI1 high level is valid state or low level is valid state. As for the function setting of AI1 as DI, it is the same as the normal DI setting, please refer to the description of the relevant DI setting of F6 group.

The following figure takes AI1 input voltage as an example to illustrate the relationship between AI1 input voltage and corresponding DI status:

6.9 F7 set (Output terminal parameters)

VFDs come standard with one multi-function analog output terminal AO, one multi-function digital output terminal DO, and one multi-function relay output terminal.

Code	Name	Range	Default	Modification
F7-00	Digital output selection	0: High-speed pulse output 1: Normal digital output	0	☆

The DO output terminal is a high-speed pulse output terminal or an open-collector terminal multiplexing port. When set to high-speed pulses, the output is high-frequency pulses up to 100kHz.

As an open-collector common digital output, its function is set by F7-02.

When used as high-speed pulse output, its function is set by F7-04.

Code	Name	Default	Modification
F7-01	RELAY1 output function selection	0	☆
F7-02	DO output function selection	1	☆

These multi-function terminals are described as follows:

Code	Name	Name Function description	
0	0: No output	The output terminal has no function.	
1	1: VFD is running	Indicates that the VFD is in the running (RUN) state.	
2	2: Fault output (for free stop	Indicates that the VFD has an output fault, and the fault level is	
	fault)	free stop (cut off the output).	
3	3: Frequency level detection	Indicates that the output frequency reaches or exceeds the set	
3	FDT1 output	value of F9-18/19.	
4	A: Fraguency reached	Indicates that the absolute value of the output frequency	
4	4: Frequency reached	reaches the set value of F9-20.	
5 5: Running at zero speed (no Indicates that the VFD is in RUN state and the output free		Indicates that the VFD is in RUN state and the output frequency	

	output when VFD stops)	is OHz. Although the output frequency is also OHz during shutdown, this function terminal will not take effect.
6	6: Motor overload pre-alarm	When the motor overload protection is turned on and the motor load exceeds the set value of the motor overload warning coefficient F8-02, the output is valid.
7	7: VFD overload pre-alarm	10s before the VFD overload protection action, the output becomes valid.
8	8: Set count value reached	In the counting function, when the count value reaches the set count value FD-08, the output becomes valid.
9	9: Designated count value reached	In the counting function, when the count value reaches the specified count value FD-09, the output becomes valid.
10	10: Length reached	In the fixed length function, when the actual length FD-06 exceeds the set length FD-05, the output becomes valid.
11	11: PLC cycle completed	When the PLC completes a cycle, the output becomes valid, and becomes invalid after 250ms.
12	12: Accumulated operation time reached	When the "accumulated running time FA-07" reaches the value set by "set running time F9-16", the output becomes valid.
13	13: Frequency being limited	When the given frequency exceeds the upper limit frequency or the lower limit frequency, and the actual frequency exceeds the upper limit frequency or the lower limit frequency (that is, in the swing frequency limit), the output is valid.
14	14: Torque being limited	When the VFD runs in the speed control mode, the output is valid when the output torque reaches the upper limit of the speed control torque or the speed deviation exceeds 2Hz.
15	15: Operation ready	When the power supply of the main circuit and control circuit of the VFD has been stabilized, and the VFD has detected any fault information, the VFD is in a running state (that is, there is no fault, no undervoltage), and the output is valid.
16	16: Upper limit frequency reached	When the running frequency is greater than the upper limit frequency F0-11, the output is valid.
17	17: Lower limiting frequency reached(running-related)	When "Running F9-14 with set frequency lower than the lower limiting frequency" is set to "0: Running with lower limiting frequency" or "2: Zero speed running", and the operating frequency is lower than the lower limiting frequency F0-12, the output is valid. When "Running F9-14 with set frequency lower than the lower limiting frequency" is set to "1: Stop", the terminal always keeps the output invalid. When the output frequency is less than the lower limiting frequency during acceleration, the output is valid
18	18: Undervoltage status output	When the "set frequency is lower than the lower limit frequency running action F9-14" is set to "1: stop", the terminal always keeps the output invalid. When the output frequency is less than the lower limit frequency during acceleration, the output is valid

19	19: Communication settings	When the VFD is in the state of input undervoltage, the output is valid.
20	20: Operation at zero speed signal 2 (also output when operation stops)	It indicates that the VFD is in the RUN state and the output frequency is 0Hz or there is no output when it stops.
21	21: Accumulated power-on time reached	When "cumulative power-on time FA-09" reaches the set value of "set power-on reaching time F9-15", the output becomes valid.
22	22: Frequency level detection FDT2	The output frequency reaches or exceeds the F9-21/22 set value.
23	23: Frequency 1 reached	Indicates that the output frequency of the VFD is within the range of "arbitrary arrival frequency detection value 1 F9-23" ± ("maximum frequency F0-09" × "arbitrary arrival frequency detection width 1 F9-24").
24	24: Frequency 2 reached	Indicates that the output frequency of the VFD is within the range of "arbitrary arrival frequency detection value 1 F9-23" ± ("maximum frequency F0-09" × "arbitrary arrival frequency detection width 2 F9-26").
25	25: Current 1 reached	Indicates that the output current of the VFD is within the range of "arbitrary arrival current 1 F9-31" ± ("motor rated current F3-02" × "arbitrary arrival current 1 detection width F9-32").
26	26: Current 2 reached	Indicates that the output current of the VFD is within the range of "arbitrary arrival current 2 F9-33" ± ("motor rated current F3-02" × "arbitrary arrival current 2 detection width F9-34").
27	27: Time out	When the timing function selection F9-35 is set to 1 to be valid, the output is valid when the "current running time F9-39" reaches the given value of "timed running time F9-36".
28	28: Al1 input overloaded	When the AI1 input voltage exceeds the range of "AI1 input voltage protection value lower limit F9-40" ~ "AI1 input voltage protection value upper limit F9-41", the output is valid.
29	29: Load dropping	When the drop-load protection is turned on (F8-51 select 1 is valid), and the load is so small that the drop-load detection is triggered, the output is valid.
30	30: Reverse running	Indicates that the VFD is running in reverse, and the output U/V/W is in reverse order.
31	31: Zero current state	When the output current of the VFD is less than the set value of "zero current detection level F9-27" and the duration exceeds the set value of "zero current detection delay time F9-28", the output is valid.
32	32: Module temperature reached	Indicates that the value of the heat sink temperature FA-06 is greater than the value set by "Module temperature reaches F9-38".
33	33: Output current limit exceeded	When the output current of the VFD is greater than the set value of "output current over-limit F9-29" and the duration exceeds the set value of "output current over-limit detection delay time F9-30", the output is valid.

34	34: Lower limit frequency reached (also output when the VFD stops)	The output is valid when the running frequency value is less than the lower limit frequency F0-12 or when it stops.
35	35: Alarm (all faults)	When the VFD is faulty and the fault level is to continue running, the output is valid.
36	36: Operation Times Up	When the current running time is greater than the "current running arrival time setting"
37	37 : Fault (only for free stop faults and not for undervoltage faults)	Indicates that the VFD has an output fault (excluding input undervoltage fault), and the fault level is free stop (cut off the output).

Code	Name	Default	Modification
F7-03	AO output function selection	0	☆
F7-04	High-speed pulse output function selection	0	☆

These multi-function terminals are described as follows:

Code	Name	Function description
0	0: Operating frequency	0Hz ~ maximum frequency F0-09
1	1: Set frequency	0Hz ~ maximum frequency F0-09
2	2: Output current	0 ~ 2 times the rated current of the motor
3	3: Output torque (absolute value of torque)	0 ~ 2 times the rated torque of the motor
4	4: Output power	0 ~ 2 times motor rated power
5	5: Output voltage	$0 \sim 1.2$ times the rated voltage of the VFD
6	6: PULSE input (100.0% corresponds to 100.0kHz)	0.01kHz ~ 100.00kHz
7	7: Al1	0V ~ 10V (0~20mA)
8	8: AI2 (keyboard rotary potentiometer)	0V ~ 10V
9	9: Length	0 ~ set length FD-05
10	10: count value	0 ~ Set count value FD-08
11	11: Communication settings	0 ~ 100% output value given by communication command
12	12: Motor speed	0 ~ Speed corresponding to the maximum frequency F0-09
13	13: Output current (100.0% corresponds to 1000.0A)	0.0A ~ 1000.0A
14: Output voltage (100.0 corresponds to 1000.0V)		0.0V ~ 1000.0V
15	15: Output torque (actual torque value)	-2×motor rated torque ~ 2×motor rated torque

Code	Name	Range	Default	Modification
F7-05	Maximum frequency of high-speed pulse output	0.01KHz~100.00KHz	50.00KHz	☆

When the DO1 terminal is set to high-speed pulse, you can set the corresponding frequency when the high-speed pulse output is 100% through this function code.

Code	Name	Range	Default	Modification
F7-06	AO bias coefficient	-100.0% ~ +100.0%	0.0%	☆
F7-07	AO gain	-10.00 ~ +10.00	1.00	☆

This function code is generally used to correct the zero drift of the analog output and the deviation of the output amplitude. It can also be used to customize the required analog output curve

The calculation relation takes AO1 as an example:

y1 represents the minimum output voltage or current value of AO1; y2 represents the maximum output voltage or current value of AO1

 $y1 = 10V \text{ or } 20\text{mA} \times \text{F7-06} \times 100\%;$

 $y2 = 10V \text{ or } 20mA \times (F7-06 + F7-07);$

The factory default value of F7-06 = 0.0%, F7-07 = 1, so the output $0\sim10V$ (or $0\sim20mA$) corresponds to the minimum value of the physical quantity represented by the maximum value of the physical quantity represented.

Example 1:

Change $0\sim$ 20mA output to $4\sim$ 20mA

The minimum input current value by the formula: $y1 = 20mA \times F7-06 \times 100\%$,

 $4 = 20 \times F7-06$, calculated according to the formula F7-06 = 20%;

The maximum input current value by the formula: $y2=20mA \times (F7-06 + F7-07)$;

 $20=20 \times (20\% + F7-07)$, calculated according to the formula F7-07 = 0.8

Example 2:

Change $0\sim10V$ output to $0\sim5V$

The minimum input voltage value by the formula: $y1 = 10 \times F7-06 \times 100\%$,

 $0=10 \times F7-06$, calculated according to the formula F7-06 = 0.0%;

The maximum input voltage value by the formula: $y2=10 \times (F7-06 + F7-07)$;

 $5=10 \times (0 + F7-07)$, calculated according to the formula F7-07 = 0.5

Code	Name	Default	Modification
F7-08	AO output filter time	0.000s~1.000s	☆

If there is a large AO fluctuation and the output needs to be relatively stable, the filter time can be appropriately increased; the longer the filter time, the slower the AO response time.

Code	Name	Range	Default	Modification
F7-10	RELAY1 output delay time	0.0s ~ 3600.0s	0.0s	☆
F7-11	DO output delay time	0.0s ~ 3600.0s	0.0s	☆

Set the action delay time of the output terminal, the time from the trigger state to the actual output becoming valid.

Code	Name	Range	Default	Modification
		0: Positive logic		
F7 40	DO output valid	1: Inverse logic	00	
F7-12	state selection	Units digit: RELAY1	00	☆
		Tens digit: DO1		

Set the logic state of the output terminal, such as RELAY, the positive logic is normally open, and it is closed when

it is valid; the negative logic is normally closed, and it is disconnected when it is valid.

6.10 F8 set (Fault and protection, accelerated overcurrent)

Code	Name	Range	Default	Modification
F8-00	Motor overload protection selection	0: Disable 1: Enable	1	☆
F8-01	Motor overload protection gain	0.20 ~ 10.00	1.00	☆

F8-00 Motor overload protection options:

Select whether to enable the overload protection of the VFD to the motor.

If the motor overload protection is turned off, the motor may be overloaded and damaged. It is recommended to install a thermal relay or other motor overheat protection circuit.

F8-01 Motor overload protection gain:

Motor overload time = typical time of motor overload curve \times motor overload protection factor

For example, the 145% overload time of the motor is 300s. If you want to modify it to 180s, then F8-01 needs to be modified as: 180/300 = 0.6.

		Typical va	lue of motor	overload cur	/e		
Current multiple	1.15	1.25	1.35	1.45	1.55	1.65	1.75
Overload time (sec)	4800	2400	900	300	120	120	120

Code	Name	Range	Default	Modification
F8-02	Motor overload warning coefficient	50% ~ 100%	80%	☆

This coefficient represents that the motor is in the overload state, after the accumulated time of motor overload reaches the percentage of the trigger time of motor overload protection, the motor overload warning state is set, and the function terminal can be used as the warning output.

Code	Name	Range	Default	Modification
F8-07	Power-on ground short-circuit protection options	0: Disable 1: Enable	1	☆

Select whether the VFD detects output short circuit to ground when power on. If it is valid, there will be a voltage output at the output end of the VFD after power-on.

Code	Name	Range	Default	Modification
F8-08	Automatic fault reset times	0 ~ 20	0	☆
F8-09	Fault during automatic fault reset	0: Operation halt	0	☆
	Relay action selection	1: Operation		, ,
F8-10	Automatic fault reset interval time	0.1s ~ 100.0s	1.0s	☆

F8-08 Fault automatic reset times:

When the VFD fails, it can be automatically reset (equivalent to the RST button function). When the number of automatic resets exceeds the set value, the VFD will keep the fault status when it encounters a fault again.

F8-09 Fault relay action selection during automatic fault reset:

After set to action, the function terminal set as fault state output will be set to valid state in case of failure, and will

return to invalid state after automatic reset.

After it is set to no action, during the fault and automatic reset process, the function terminal of the fault status output always remains in the invalid state.

F8-10 fault automatic reset interval:

Set the delay time of automatic reset after the fault state occurs. During this period, the VFD remains in the fault state.

Code	Name	Range	Default	Modification
F8-12	Output phase loss protection option	0: Disable 1: Enable	1	☆

Select whether to detect the output phase loss status. If this function is turned off, the VFD will continue to work when the VFD output phase is missing. At this time, the output current may be greater than the displayed current, which is a risk.

If this function is turned on, when the VFD detects that the output phase is missing, the VFD will report the E13/A13 fault, and perform the protection action according to the setting of the fault protection action.

Code	Name	Default	Modification
F8-13	Type of first fault	-	•
F8-14	Type of second fault	-	•
F8-15	Type of third (latest) fault	-	•

Check the fault types as follows:

Fault type	Function	Fault type	Function
0	0: No fault	20	20: Abnormal Parameter reading and writing
1	1: Wave-by-wave current limiting fault	21	21: VFD hardware abnormal
2	2: Acceleration overcurrent	22	22: Ground short circuit of motor
3	3: Deceleration overcurrent	23	23: Running time reached
4	4: Constant speed overcurrent	24	24: User-defined fault 1
5	5: Acceleration overvoltage	25	25: User-defined fault 2
6	6: Deceleration overvoltage	26	26: Power-on time reached
7	7: Constant speed overvoltage	27	27: Offload
8	8: Buffer resistor overload	28	28: PID feedback lost during operation (frequency source)
F9	9: Undervoltage	29	29: The speed deviation is too large (the deviation between the given and the feedback)
10	10: VFD overload	30	30: Motor overspeed
11	11: Motor overload	31	31: VFD unit protection
12	12: Input phase loss	32	32: Code disc failure
13	13: Output phase loss	33	33: Motor over temperature fault
14	14: The module overheated	34	34: SVC stall fault
15	15: External fault	35	35: Magnetic pole position detection failed
16	16: Communication abnormal	36	36: UVW signal feedback error
17	17: Contactor abnormal	37	37: Point-to-point slave failure
18	18: Abnormal current detection	38	38: Braking resistor short circuit
19	19: Abnormal motor tuning	39	39: Switch the motor while running

Code	Name	Default	Modification
F8-16	Frequency at the third (latest) fault	-	•
F8-17	Current at the third (latest) fault	-	•
F8-18	Bus voltage at the third (latest) fault	-	•
F8-19	Input status at the third (latest) fault	-	•
F8-20	Output status at the third (latest) fault	-	•
F8-21	VFD status at the third (latest) fault	-	•
F8-22	Power-on time at the third (latest) fault	-	•
F8-23	Operation time at the third (latest) fault	-	•
F8-24	Frequency at the second fault	-	•
F8-25	Current at the second fault	-	•
F8-26	Bus voltage at the second fault	-	•
F8-27	Input status at the second fault	-	•
F8-28	Output status at the second fault	-	•
F8-29	VFD status at the second fault	-	•
F8-30	Power-on time at the second fault	-	•
F8-31	Operation time at the second fault	-	•
F8-32	Frequency at the first fault	-	•
F8-33	Current at the first fault	-	•
F8-34	Bus voltage at the first fault	-	•
F8-35	Input status at the first fault	-	•
F8-36	Output status at the first fault	-	•
F8-37	VFD status at the first fault	-	•
F8-38	Power-on time at the first fault	-	•
F8-39	Operation time at the first fault	-	•

The above can view various information at the time of failure.

Code	Name	Range	Default	Modification	Code
		Units digit	Motor overload (E11)		
		0	Free stop		
F8-40	Fault protection action selection 1	1	Stop by shutdown sequence	00000	☆
			2	Continue operation	
		Tens digit	Input phase loss (E12)		

Hundreds digit	Output phase loss (E13) (As same as the unit digit)	
Thousands digit	External failure (E15) (As same as the unit digit)	
Ten Thousands digit	Communication abnormal (E16) (As same as the unit digit)	

Code	Name	Range	Default	Modification	Code		
		Units digit	Function code reading and writing abnormal (E20)				
		0	Free stop				
		1	Stop by shutdown sequence		☆		
	Fault protection action selection 2	Tens digit	Operation time reached (E23) (As same as the F8-40 unit digit)	00000			
F8-41		Hundreds digit	User-defined fault 1(E24) (As same as the F8-40 unit digit)				
			Thousan digit	Thousands digit	User-defined fault 2(E25) (As same as the F8-40 unit digit)		
		Ten Thousands digit	Power-on time reach(E26) (As same as the F8-40 unit digit)				

Code	Name	Range	Default	Modification	Code
	Fault protection action selection 3	Units digit	Offload(E27) (As same as the F8-40 unit digit)	00000	☆
		Tens digit	PID feedback lost during operation (E28) (As same as the F8-40 unit digit)		
		Hundreds digit	The speed deviation is		
F8-42			too large (E29) (same as		
10-42			F8-40 digit)		
		Thousands	Motor overspeed (E30)		
		digit	(same as F8-40 digit)		
		Ten	Magnetic pole position		
		Thousands	detection failure (E35)		
		digit	(same as F8-40 digit)		

Code	Name	Range	Default	Modification	Code
	Fault protection action selection 4	Units digit	Code disc fault (E32)		
		(same as F8-40 digit)	(same as F8-40 digit)	00000	
		Tens digit	Reserved		
F8-43		Hundreds	Reserved		☆
		digit			
		Thousands	Reserved		
		digit			

	Ten		
	Thousands	Reserved	
	digit		

Coast to stop: The VFD displays fault code E** and stops directly, and the motor coasts to stop.

Stop according to the stop mode: the VFD displays the fault code A^{**} , stops according to the set stop mode, and displays the fault code E^{**} after the stop.

Continue to run: The VFD displays the fault code A** and continues to run. The state of continued running is determined by the setting value of the frequency selection F8-45 when the fault occurs.

Code	Name	Range	Default	Modification
	Frequency selection for continuous	0: Current operating frequency	0	
		1: Set frequency		
F8-45	operation in spite of	2: Upper limit frequency		☆
	faults	3: Lower limit frequency		
		4: Abnormal standby frequency		

- 0: Run at the fault frequency.
- 1: Run at the frequency given by the frequency source F0-06.
- 2: Run at the frequency given by the upper limit frequency source F0-10.
- 3: Run at the frequency given by the lower limit frequency F0-12.
- 4: Run at the frequency given by the abnormal standby frequency F8-46.

Code	Name	Range	Default	Modification
F8-46	Abnormal backup	0.0% ~ 100.0%	100.00/	
	frequency	(100.0% corresponding to F0-09)	100.0%	☆

100.0% corresponds to the maximum frequency F0-09.

Code	Name	Range	Default	Modification
	F8-47 Instantaneous failure tolerance function selection	0: Invalid	1	*
F8-47		1: Decelerate		
		2: Decelerate to stop		

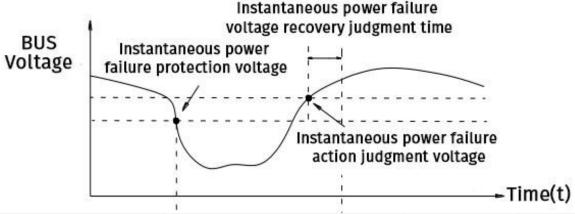
In the event of an instantaneous power failure or a sudden drop in voltage, the VFD reduces the output speed to compensate the decrease in the DC bus voltage of the VFD with the load feedback energy, so as to keep the VFD running.

There are three state options: 0-invalid; 1-deceleration; 2-deceleration to stop

When the selection of 0 is invalid, the voltage is lower than the undervoltage of the VFD, and the VFD directly reports the undervoltage fault;

When selecting 1 to decelerate, and the voltage is lower than the set value of F8-50, the VFD decelerates to keep the bus voltage constant until it runs at 0Hz;

When selecting 2 to decelerate, the voltage is lower than the set value of F8-50, the VFD decelerates to stop, and the time of deceleration process is given by the setting of instantaneous stop non-stop time F8-60.


Code	Name	Range	Default	Modification
F8-48	Voltage set for suspending operation in case of instantaneous failure	80.0% ~ 100.0%	85.0%	*
F8-49	Voltage recovery waiting time for continuing operation in case of instantaneous failure	0.00s ~ 100.00s	0.50s	*
F8-50	Voltage set for continuing operation in case of instantaneous failure	60.0% ~ 100.0%(Standard bus voltage)	80.0%	*

The reference voltage of the instantaneous power failure and non-stop pause action voltage and the judgment voltage are the rated bus voltage (single-phase: 311Vdc, three-phase: 540Vdc).

When the busbar voltage drops to the set value of F8-50, the VFD enters the logic of instantaneous stop and non-stop operation.

When the bus voltage rises back to the set value of F8-48, the VFD stops the instantaneous stop and non-stop action (that is, stops frequency reduction), and after delaying the time of F8-49, the VFD exits the instantaneous stop non-stop working logic, and returns to run at a given frequency.

Instantaneous power failure non-stop voltage recovery judgment time F8-49 is to prevent the VFD from repeatedly entering and exiting the instantaneous power failure non-stop logic when the input voltage is unstable, thereby setting a certain hysteresis time.

Code	Name	Range	Default	Modification
E0 E1	Offload protection	0: Disable	0	
F8-51	options	1: Enable	0	

After this function is turned on, when the output current of the VFD is less than the set value of F8-52 of the load loss detection level, and the duration is longer than the set time of the load loss detection time F8-53, the VFD will report the E27/A27 fault, and the fault will be protected according to the fault. Action setting performs protection action.

Code	Name	Range	Default	Modification
F8-52	Offload detection level	0.0% ~ 100.0%	10.0%	☆

Load loss detection current, when the output current of the VFD is less than this set value, it will determine the load loss, and 100% corresponds to the rated current of the motor.

Code	Name	Range	Default	Modification
F8-53	Offload detection time	0.0s ~ 60.0s	1.0s	☆

During the load loss detection time, if the load returns to above the set value of F8-52, the VFD will automatically return to the given frequency to run.

Code	Name	Range	Default	Modification
F8-54	Overspeed detection value	0.0% ~ 50.0%(Maximum frequency)	20.0%	☆
F8-55	Overspeed detection time	0.0s: No detection	1.0s	☆
		0.1 ~ 60.0s		

When the VFD detects that the actual speed of the motor exceeds $(1 + F8-54) \times$ maximum frequency F0-09, and the duration exceeds the set value of the overspeed detection time F8-55, the VFD will report E30 and act according to the fault protection set to perform protection action.

If F8-55 is set to 0.0s, the over-speed detection function is closed.

Code	Name	Range	Default	Modification
F8-56	Excessive speed deviation detection value	0.0% ~ 50.0% (Maximum frequency)	20.0%	☆
F8-57	Excessive speed deviation detection time	0.0s: No detection	5.0s	☆
		0.1 ~ 60.0s		

When the VFD detects that the absolute value of the difference between the actual speed of the motor and the given speed exceeds $F8-56 \times maximum$ frequency F0-09, and the duration speed deviation is too large to detect the given value of F8-57, the VFD will Report E30, and perform protection action according to the setting of fault protection action.

If F8-57 is set to 0.0s, the detection function of excessive speed deviation is disabled.

Code	Name	Range	Default	Modification
F8-58	Deceleration to stop Kp	0~100	30	*
F8-59	Deceleration to stop Ki	0.0~300.0	20.0	*

If the instantaneous power failure does not stop in the working state of "1: Deceleration", it is easy to trigger undervoltage, and Kp&Ki can be appropriately increased.

Code	Name	Range	Default	Modification
F8-60	Time setting of Deceleration to stop	0~6500.0s	10.0s	☆

Set the deceleration time during which the momentary stop does not stop in the working state of "2: Deceleration to stop".