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Abstract—DDoS attack is one of the major concerns for
network and cloud service providers, due to its substantial impact
on revenue/cost and especially on their reputation. Also, network
administrators are looking for solutions to manage voluminous
data traffic. SDN is an emerging networking paradigm that
provides a flexible network management. Hence, SDN is being
widely adopted for wired, wireless, and mobile networks. Apart
from a single point of failure (the controller), an attacker can
target SDN at various levels by DDoS attacks.

Existing solutions either focus on a particular attack type
or require cumbersome alterations in SDN infrastructure. In
this paper, we propose a comprehensive, yet effective and
lightweight approach to detect various fundamentally different
DDoS attacks in SDN. Our approach relies on sequential analysis.
We employ a non-parametric change point detection technique
called Cumulative Sum (CuSum). Our framework also includes
an adaptive threshold scheme that adapts with the changing
traffic pattern. Additionally, our framework can be tuned to
suffice critical security requirements such as high detection rate
and low false alarm rate. We evaluated the effectiveness of our
solution using CAIDA Internet traces as well as DARPA intrusion
detection evaluation dataset. Our results confirm the effectiveness
of our mechanism. In particular, average false alarm rate in our
experiments was under 11.64%. On average, our method is able
to detect DDoS attacks within 4.15 seconds.

Index Terms—Distributed Denial of Service (DDoS), Software
Defined Networks (SDN), Network Security

I. INTRODUCTION

In today’s Internet, end hosts have almost no control over
the quantity or type of traffic forwarded to them. Typically,
Internet Service Providers (ISPs) are responsible for regulating
the traffic in network through traffic engineering. An ISP must
take into account several important factors when performing
the traffic engineering tasks, including highly unpredictable
and dynamic nature of the Internet traffic, its resources and
their capacity, its Service Level Agreements (SLA) with
its customers, its policies and agreements with other ISPs.
Moreover, an ISP would never want to upset its consumers by
dropping their traffic despite the fact that a substantial amount
of the traffic may be potentially unwanted by a consumer.

Such quandary of an ISP leads to several significant prob-
lems, especially to the catastrophic Distributed Denial of
Service (DDoS) attacks that not only affect end hosts but
sometimes also affect the ISP itself. Since their inception,
DDoS attacks are still one of the biggest threats to the In-
ternet’s stability and security. With the increase in capacity of
the Internet, the scale of DDoS attacks has also enlarged. As an
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illustrative example, a hosting company OVH was the victim
of a 1 Tbps DDoS attack that hit its servers, which was one
of the largest attacks ever seen on the Internet till late 2016'.
Such attacks have been partially facilitated by user-friendly
tools, e.g., Low Orbit Ion Cannon (LOIC) [1], hping3 [2],
Stacheldraht [3]. Such tools enable even novice users to
launch massive attacks against several targets simultaneously.
Furthermore, employment of techniques such as IP spoofing
makes it even harder to track and identify the attacker.
Recent developments and innovations in networking assure
to change how the future Internet will work. In particular,
networking infrastructure along with data plane and control
plane witnessed promising improvements. The data plane is
typically responsible for packet forwarding while the control
plane takes all the routing decisions. Figure 1 depicts a
simplified architecture of the conventional network, where the
control plane and the data plane are embedded into the same
device. In general, the forwarding rules are hardwired into a
traditional device, and hence, traditional networks lack flexibil-
ity. Traditional networks are largely un-programmable by their
owners while the innovations are limited to vendors or their
partners. Besides, the devices have longer hardware fabrication
cycles, and network management remains complex [4].
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Figure 1: A simplified architecture of the traditional network

Software Defined Network (SDN) is a recently proposed
networking architecture that completely separates the control
plane from the data plane. All the networking elements in
the data plane act as a simple packet forwarding device while
all the routing decisions are made by a logically centralized
system, i.e., the controller in the control plane [5]. Figure 2
presents a simplified architecture of SDN. The programma-
bility of the control plane enables us to devise resilient
routing logics, which can accommodate diverse requirements
of various network applications.

'http://securityaffairs.co/wordpress/51640/cyber-cr
ime/tbps-ddos—-attack.html
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Figure 2: A simplified architecture of SDN

The potential of SDN has gained enormous attention from
the research community as well as the industries. As SDN is
still an emerging networking concept, it has various concerns
related to performance, reliability, management, and secu-
rity [6]. The performance issues include utilization of switch
resources (e.g., bandwidth, flow-table size), efficient handling
of new flows, and lookup procedures. The management issues
mainly focus on careful management of the control plane and
its resources as the control plane is responsible for handling
the entire network. The reliability issues comprise link failure,
controller failure, and asynchronous update of switches. How-
ever, the main objective of our work is to analyze the security
issues in SDN; DDoS attacks in particular, and propose an
effective DDoS detection framework.

Contributions: In this paper, we introduce a comprehensive,
effective, and lightweight approach for detection of DDoS
attacks in SDN. The major contributions of our work are listed
as follows:

1) We thoroughly analyze how DDoS attacks impact on the
different levels of SDN architecture.

2) We propose a simple, yet efficient solution for the detec-
tion of DDoS attacks in SDN.

3) We emulated our solution and evaluated its effectiveness
using Internet traces provided by CAIDA [7] as well as
DARPA intrusion detection evaluation dataset [8].

Organization: The remainder of this paper is organized
as follows. Section II thoroughly explains various important
aspects of DDoS attacks. Here, we discuss the typical classes
of DDoS attacks, DDoS detection techniques, and how DDoS
attack can be launched in SDN environment along with its
repercussions on SDN. Here, we also present an overview of
related works regarding DDoS attacks in SDN. In Section III,
we elaborate the threat model. In Section IV, we explain our
detection approach with its implementation details. Section V
covers the details of our experimental setup while we discuss
and analyze our results in Section VI. Finally, Section VII
concludes the paper and explores the future directions.

II. PRELIMINARIES AND RELATED WORK

DDoS is a cyber-attack where the attacker uses more than
one machine (usually compromised) to make network services
or resources unavailable to its intended users. A DDoS attack
is typically launched in four phases namely: recruit; exploit;
infect; and use [9]. In the recruit phase, the attacker scans
remote machines for security holes that will help to barge in.

In the exploit phase, the discovered loopholes are exploited
to break into vulnerable machines. Such machines are then
infected with the attack code in the next phase. And finally,
the compromised machines are used to launch attack payload.
Based on the targeted protocol level, DDoS attacks can be
broadly classified into two categories [10, 11]:

1) Transport/network-level attacks: Such attacks use ICMP,
TCP, UDP, and DNS protocol packets to launch DDoS.
The aim here is to disrupt legitimate users’ connectivity
by exhausting the bandwidth of victim’s network. The
attacker can either use direct flooding or reflection-based
flooding. In reflection-based flooding, the attacker sends
forged requests to a large number of hosts, which in turn
reflects massive replies towards the target.

2) Application-level attacks: Such attacks focus on exhaust-
ing server’s resources such as CPU, memory to interrupt
legitimate users’ services. In general, the attacker em-
ploys request flooding attacks and slow request/response
attacks.

The remainder of this section explains the typical DDoS de-
tection techniques, DDoS attack scenario in SDN environment
along with its impact on SDN architecture, and state-of-the-art
regarding DDoS detection in SDN.

A. DDoS Detection Techniques

DDoS detection techniques can be widely classified into
two categories: signature-based detection, and anomaly-based
detection.

Signature-based Detection: A signature is a pattern of string
that corresponds to a known threat or attack. The signature-
based detection relies on string comparison techniques. Such
methods compare and search for the current unit of activity
such as a packet entry or a log entry in a signature repository.
Signature-based detection approaches are efficient to identify
only recognized attacks without any complex procedures. On
another side, such methods are not capable of identifying
variants of known attacks as well as new attacks. Other
challenges include keeping an up-to-date signatures repository
and proliferating size of the signature database.

Anomaly-based Detection: As opposed to signature-based
detection, anomaly-based detection does not require predefined
signatures or patterns to classify an activity. Such methods
employ statistical features of network traffic to identify attacks.
As a representative example, incoming packet rate can serve as
a feature. The current network behavior is compared with the
observed network behavior, and an alarm is raised when there
is a significant variation from the normal course of operation.
Such methods are capable of identifying variants of known
attacks as well as unknown attacks. Nevertheless, they may
create various spurious alarms [12].

B. DDoS in SDN

A DDoS attack in SDN environment can affect the network
at various levels. It is worth mentioning that some attack
vectors are common to the traditional network while some
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threats are unique to SDN. For instance, instead of high-
volume traffic flows, an attacker might use low-volume traffic
flows to generate a huge number of Packet_In messages, which
in turn overloads the ingress switch as well as the controller.
Figure 3 shows that the attacker can strike on the switch, the
controller, and the secure link between the control plane and
the data plane.
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Figure 3: Impact of DDoS attack in SDN

Impact on switches: The objective of the attacker is to
drop or at least delay legitimate users’ packets to deteri-
orate the performance of the network and ultimately, ruin
users’ experience. Normally, when a new flow of packets
reaches a switch, a “table-miss” event is raised. Consequently,
a Packet_In message is forwarded to the controller to obtain an
action. For all subsequent packets in the same flow, the switch
applies the obtained action without any controller intervention.
While the switch awaits for a response from the controller, it
buffers the incoming packets in its buffer memory. In case
the buffer gets full, the subsequent packets are dropped due to
insufficient space in the buffer. In general, the attacker employs
IP spoofing to generate a huge number of flows with random
headers. Hence, botnets overflow the switching device with
supposedly fresh flows of packets. Consequently, packets from
legitimate hosts are dropped or at least delayed.

Impact on controller: The logically centralized controller
is the single point of failure, and its breakdown can disrupt
the entire network. The controller computes an action set for
each Packet_In request coming from a switch. Calculating
the action sets consumes controller’s resources such as CPU,
memory, I[/O bandwidth. The controller can handle a large, but
still a limited number of request at a given instance of time.
Hence, with a huge number of requests generated by a DDoS
attack will saturate the resources of the controller. Eventually,
genuine requests are delayed or even dropped.

An attacker may also seek to interfere with controller’s
functioning through attempts such as buffer overflow, which
may lead to the installation of erroneous forwarding rules in
the data plane.

Impact on secure channel between control and data plane:
The control and the data plane communicate over a secure
channel. The secure channel carries periodic as well as spo-
radic messages. Even minute congestions in the channel may
lead to inevitable delays in network functioning. Especially,
delaying Packet_In messages notably degrades network perfor-
mance. An enormous number of flows generated by a DDoS
attack can saturate the secure channel, eventually ceasing the
operation of the entire network [13].

C. DDoS Detection in SDN

Several researchers argued that a sensible solution for DDoS
attacks is to enhance the security of every Internet host and
prevent the damages from such attacks [14], while others
suspect the widespread acceptance of such mechanisms [15].
Other researchers insisted that DDoS attacks are not even
a security issue, but they are scalability questions [16]. In
support of their claim they say that the attackers will continu-
ously attempt to make their requests indistinct from the benign
traffic; hence, they may defeat the detection mechanisms. In
this scenario, the final solution is to increase resources in terms
of quantity, which is expensive.

Mousavi et al. [17] proposed an entropy-based mechanism
to detect a DDoS attack in SDN. Here, in case of an attack, the
entropy decreases on the basis of the randomness of incoming
packets’ destination address. However, the approach assumes
that the number of hosts in the network will always remain
static and destination IP addresses are always evenly dis-
tributed for normal traffic. Mehdi et al. in [18] used maximum
entropy estimation to determine benign traffic distribution and
anomaly detection in SDN. The solution focuses only on small
networks such as office and home networks.

Braga et al. [19] performed cluster analysis to detect
DDoS in SDN. In this work, the system continuously collects
statistical features of the flows and observe the collected
features to identify any unusual activity. However, gathering
and observing a large amount of data significantly deteriorates
the performance of the controller. YuHunag et al. in [20]
proposed a flow monitoring system to identify a DDoS attack.
The proposed approach produces spurious alarms in a situation
when a benign user starts to generate a large volume of
traffic. Dong et al. in [21] introduced a solution to deal with
Packet_In flooding attack against the controller. Shin et al.
in [22] proposed a system called Avant-Guard that identifies
DDoS attack induced by a flooding of TCP SYN packets.
LineSwitch [23] improves Avant-Guard through a solution
based on probability and blacklisting. However, both Avant-
Guard and LineSwitch focus only on SYN flooding-based
saturation attacks.

Kotani et al. in [24] proposed a Packet_In filtering approach
for protection of control plane in OpenFlow networks. The
solution requires large TCAM space to accommodate pending
flow tables. Also, it fails when the datapath cannot parse pack-
ets of certain protocols and extract the required information,
for instance, payloads in ARP, VLAN ID in 802.1Q headers.
To defend against DDoS attacks, SDNShield [25] requires



2017 IEEE 13th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob)

deployment of specialized software boxes. Wang et al. [26]
introduced a DDoS mitigation architecture where the DDoS
mitigation strategy relies on a public cloud provider, which
takes actions against the threats. However, the authors did not
clarify where the suspicious traffic is hosted after it is detected.

Kalliola et al. [27] proposed a machine-learning based
approach that integrates traffic learning with external blacklist
information for DDoS detection. The defense mechanism
works at the IP layer; hence, attacks targeting other layers do
not fall within the scope of the proposed defense mechanism.
The work presented in [28] employs a multi-controller system
to solve the problem of DDoS attacks. However, the approach
has several limitations. On one side, it employs random packet
transmission delay to protect from scanning attacks, which
in fact, affects the data transmission for legitimate users. On
another side, synchronization of prolonged route tables among
multiple controllers is overlooked.

To summarize, existing solutions either focus on a particular
attack type or require alterations in SDN infrastructure and
support from external entities such as public cloud provider.
Our work is different from the state-of-the-art on various
dimensions: (1) it can detect various fundamentally different
attacks; (2) it does not require any change to the infrastructure
or support from external entities; (3) it does not need any
exhaustive training before implementation; and (4) it adapts
automatically to changing traffic pattern.

III. THREAT MODEL

The target of the attacker is a server, i.e., the victim server,
which provides services to the hosts. The victim’s network
employs SDN as an underlying network architecture. The
attacker has no information about the topology of victim’s
network, but the attacker knows that the victim’s network is
using SDN. The attacker and the victim may reside in the
same or different networks. The attacker could be an individual
user, a group of users, or a group of compromised systems
(bots) controlled by the attacker. The attacker uses IP spoofing
as a camouflage technique. When the attacker launches a
DDoS attack (for attack details, please refer to Section V),
it reaches victim’s network and can cause damages to the
network resources as well as to the victim.

IV. PROPOSED APPROACH

In this section, we present our framework for detection of
DDoS attacks in SDN. Here, we explain the fundamental prin-
ciples, followed by its comprehensive implementation details.

A. Cumulative Sum (CuSum)

A non-parametric method, called the CuSum approach, is an
anomaly detection technique used for change point detection.
CuSum based mechanisms measure the deviation of current
observation from a historical (long-term) average of the obser-
vations. In our framework, we consider the volume of packets
flowing per unit of time as a parameter to CuSum. When the
current observation overshoots the historical average of the
observations, then the value of CuSum coefficient ascends, and

vice versa. Hence, if the value of CuSum coefficient surpasses
an implemented threshold, it designates an exaggerating packet
arrival rate, which is likely to be due to a DDoS attack [29].
Equation (1) shows the computation of the CuSum coefficient:

S(t) = max{0, (S(t—1)+Npi(t)—m(t))};  S(0) =0, (1)

where t represents the time of current observation, ¢ — 1
represents the time of previous observation, S(t) represents
the CuSum coefficient at time ¢, N,(t) represents the number
of packets arrived between ¢ — 1 and ¢, and m(t) represents
the long-term average of packets arrived till ¢. Equation (2)
shows the computation of m(t):

m(t) =exm(t—1)+ (1 —e€) *x Npi(t); m(0) =0, (2)

where the value of € varies from zero to one, i.e., 0 < e < 1.
It is clear from Eq. (2) that a value of ¢ that is greater than 0.5
indicates dominance of the historical average of packet count;
otherwise, current packet count holds more importance.

Interpreting a CuSum graph is straightforward. A segment
of the CuSum graph with a positive slope represents a duration
when the values tend to be higher than the overall average.
Similarly, a segment of the CuSum graph with a negative
slope represents a duration when the values tend to be lower
than the overall average. An abrupt change in the direction
of the CuSum value represents a sudden change or shift in
the average. Segments where the CuSum graph observes a
relatively straight path represents a period when the overall
average did not change much.

Need for an Adaptive Threshold: Our approach incorporates
an adaptive threshold system for the following reasons:

1) A static threshold cannot consider the tendencies and
recurring conduct of the network traffic. As an example,
traffic load during peak hours is expected to remain
higher as compared to off-peak hours, which may induce
abundant false alarms if a static threshold is engaged.

2) On the contrary, an adaptive threshold can adapt to the
trends of traffic.

3) An adaptive threshold can help to reduce false
alarms [30].

B. CuSum with Adaptive Threshold

Our method uses an adaptive threshold for CuSum with the
following rules:
For the current value of CuSum (Cp) in a window (Wp,) of
L seconds:
1) if Cr > pc, +k-oc, then
threshold,c., = threshold, g + a - threshold,q
2) else if C, < pc, — k- oc, then
threshold, e, = max(thresholdyy — B - threshold,q,
min_threshold)
3) else
threshold,,c,, = threshold,q
where, k£ is a constant, a and [ determines the degree
of adjustment in the threshold. The values of « and f
can be chosen to create a slow-increase/fast-decrease effect.
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Here, ;1c, represents the average of CuSum values in Wi,
which is computed using Eq. (3).

L
- C
po, = Ezil . (3)

And o¢, represents the standard deviation of CuSum values
in W, which is computed using Eq. (4).

L
oo, = \/Zi—l(ci - /J’CL)Q. (4)

(L—1)
C. System Model

We implemented our framework as an SDN controller
module that works alongside other forwarding modules. The
value of CuSum for the server is computed periodically. At
the same time, pc, and oc, of the CuSum values within the
window W, are also computed. The window of observation
glides in a sliding window fashion to accommodate new val-
ues. The threshold is adjusted according to the rules described
in Section IV-B. When the observed CuSum overshoots the
threshold, then an attack is identified.

One important aspect in CuSum computation is to enumer-
ate the packets arrived between ¢ — 1 and ¢, i.e., Npk(t).
The OpenFlow [31] switches maintain counters that include
the number of packets, bytes, etc., for each flow entry.
In our approach, the controller utilizes the built-in mes-
sage exchange capabilities of the OpenFlow protocol and
proactively interacts with the switches. As a part of the
proactive interaction, the controller periodically exchanges
common FLOW_STATS messages to acquire real-time traffic
statistics. Using FLOW_STATS replies from the switches,
the controller can enumerate N,(t). Each flow-rule has a
HARD_TIMEOUT and a relatively shorter IDLE_TIMEOUT.
A shorter IDLE_TIMEOUT ensures rapid eviction of momen-
tary flow-rules.

V. EXPERIMENTS

We built our test scenario as reliable and realistic as pos-
sible, by considering the suggestions in [32]. Figure 4 shows
the network topology of our test scenario. The target system
resides in Network 1, which is composed of three Open-
Flow switches controlled by a POX? controller. Here, Open
vSwitch?® serves as an OpenFlow-enabled switch. The botnets
that flood DDoS traffic are in Network 2 while legitimate
traffic flows from hosts residing in Network 2 and Network
3. Inter-network links are configured with 1 Gbps bandwidth
and 25 ms of delay while the links among OpenFlow switches
are configured with 1 Gbps bandwidth. All other intra-network
links are set to 100 Mbps bandwidth. We emulated our test
scenario using the Mininet*.

2POX - http://github.com/noxrepo/pox/
30pen vSwitch - http://openvswitch.org/
4Mininet - http://mininet.org/
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Figure 4: Test scenario’s topology

As SDN is still an emerging networking concept, no DDoS
attack dataset for SDN was publicly available at the time of
evaluation. To evaluate our proposed approach, we orches-
trated two different experiments. In the first experiment, we
produced synthetic traffic for both legitimate users and botnets
using Scapy’. To differentiate between the attack traffic and
the normal traffic we used traces provide by CAIDA. These
network traces are longer than an hour in duration and contain
a distribution of traffic for various geographical locations. The
information available in CAIDA traces was used to compute
the average packet transmission rate for a benign source in
a network. After considering the work presented in [33], we
constituted a 20% attack traffic where botnet traffic comprised
ICMP pings and had a rate higher than the normal traffic.

To assess effectiveness and versatility of our proposed
mechanism we set another experiment. Here, we used DARPA
intrusion detection evaluation dataset as they contain ample
type of attacks, i.e., over 200 instances of more than 50
types of attacks. We downsampled and transformed the packet
traces to match our emulation settings. As a representative
example, Table I shows some attacks that may overload various
components of an SDN environment.

Attacks Descriptions
Smurf Victim’s source IP is used to broadcast ICMP requests to
a network, which creates a reply flood towards the victim.
Neptune | A flood of SYN on one or more TCP ports.
ICMP pings are sent to every address within a subnet, and
IPsweep - . h . Lo
ping responses help to identify which hosts are listening.
A surveillance sweep that scans several ports to identify
Portscan . . . .
which services are running on a machine.

Table I: Some attacks that may overload SDN components

It is important to note that these attacks have different working
principles and they work at different layers. For example,
“IPsweep” works at the network layer while “Neptune” works
at the transport layer. Although “Portscan” and “IPsweep”
are not considered as DDoS attacks by conventional intrusion

“dcapy - http: www.secdev.org/projects/scapy
>S h // d / j / /
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detection mechanisms, however, they may be used to generate
a huge number of traffic flows to overload SDN components.

VI. RESULTS AND ANALYSIS

In this section, we present and discuss the results from our
experiments. Figures 5, 6, and 7 are plotted with respect to
the first experiment mentioned in Section V. The purpose of
Figure 5 and Figure 6 is to illustrate the effect of CuSum
values on the threshold. Figure 5 depicts the computed value
of CuSum and the corresponding threshold under the normal
traffic. The initial threshold was computed according to the
information available in the CAIDA traces. Although the
traffic generator script generates the traffic right from the
beginning, it takes a while to transmit the actual traffic flows.
Because in the beginning, the hosts exchange initial network
message such as ARPs. Once the network stabilizes, the
normal traffic exhibits a relatively steady state. Meanwhile, the
threshold adapts according to the value of CuSum. Since the
threshold remained higher than the CuSum value, the traffic
was classified as benign traffic.
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Figure 5: Variation of threshold against CuSum values under
normal traffic
Figure 6 depicts the computed value of CuSum and the
corresponding threshold under the attack traffic. After the
initial exchange of network messages, attack flows generate a
huge amount of traffic. The threshold adapts according to the
traffic, but the value of CuSum quickly surpasses the threshold.
The CuSum value exceeded the threshold around the sixth
second and continued to stay above it.
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Figure 6: Variation of threshold against CuSum values under
attack traffic

Figure 7 depicts the computed value of CuSum and corre-
sponding threshold under the traffic that contains both normal
and attack traffic. In this case, two attack sessions were
scheduled, the first one starting from the nineteenth second
till the twenty-ninth second and other one starting from the
fifty-ninth second till the sixty-eighth second. Both the attack
sessions were detected within four seconds. Although, there
were a few false positives after the attack sessions were over.
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Figure 7: Variation of threshold against CuSum values under
the traffic consisting of both normal and attack traffic

Now we discuss the results of the second experiment.
Here, we conducted experiments for each combination
of k,a, B, and Wp. The chosen values of k were 0.5, 1.0,
2.0 while the values for o, 5 were 0.100, 0.050, 0.025. For
the window size (W), the chosen values were from 1 to 10.
We used Detection Rate (DR), False Alarm Rate (FAR), Ac-
curacy (ACC) to assess our proposed approach. The confusion
matrix [34] as presented in Table II is a standard matrix that
is widely used for the assessment of classification methods.

Confusion Predicted Label
Matrix Normal Attack
Actual | Normal True Negative | False Positive
(TN) (FP)
Label - —
Attack False Negative | True Positive
ac (FN) (TP)

Table II: Confusion matrix

DR measures the percentage of correctly identified attacks
over all the actual attacks and is computed using Eq. (5).
TP

TP+ FN

FAR measures the percentage of legitimate traffic incor-

rectly identified as attack over the entire legitimate traffic and
is computed using Eq. (6).

DR (%) = +100. )

B FP

~ FP+TN
ACC measures the percentage of true detection over the

entire traffic trace and is computed using Eq. (7).

B TP+TN

“TP+TN+FP+FN

FAR (%) % 100. (6)

ACC (%)

100. @)
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To illustrate the effectiveness of our approach, Figure 8, as
an illustrative example, shows DR, FAR, and ACC for different
window sizes with k set to 1 and «, 8 set to 0.025. In this
case, since our method did not produce any false negative,
DR was 100% for all window sizes. While FAR was 11.63%
for window size one and two seconds, which improves and
reaches 6.98% for wider windows. Since ACC is affected
by true as well as false detections; hence, ACC was 90.38%
for window size one and two seconds, which improves and
reaches 94.23% for wider windows.

[ FAR —%— DR —m—

100 —f—F—F—F—F——F——N

ACC ]

®
o

9
8
S 60 4
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o 40} i
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Figure 8: DR, FAR, and ACC for different window sizes
where k=1 and a = 8 = 0.025

We performed ten experiments for each combination
of k,a, and [, one for each window size. Due to space
limitation, we show the results of the experiments where «
was set equal to S3. Table III presents the average and the
standard deviation of DR, FAR, and ACC computed for results
from each window size under every unique combination of
k,a, and . As explained in Section IV-B, the value of «, 8
decides the degree of modification in the threshold.

k | a=p8 | PDR | DR | KFAR | OFAR | HACC | 0ACC
(%) (%) (%) (%) (%) (%)
0.100 10.00 31.62 1.16 3.68 83.46 243
0.5 0.050 74.44 20.98 1.86 3.60 94.04 3.07
0.025 96.67 5.37 5.58 2.50 94.81 1.82
0.100 35.56 46.50 2.56 4.83 86.73 5.47
1.0 0.050 94.44 5.86 4.88 3.71 95.00 243
0.025 100.00 0.00 791 1.96 93.46 1.62
0.100 100.00 0.00 9.07 2.99 92.50 247
2.0 0.050 100.00 0.00 11.16 0.98 90.77 0.81
0.025 100.00 0.00 11.63 0.00 90.38 0.00

Table III: Average value and standard deviation of DR, FAR,
and ACC for different values of k, o, 3

DR degrades with increasing value of «, § because a larger
value of a,f modifies the threshold more as compare to
smaller values. Consequently, attacks are misclassified. While
FAR increases with decreasing value of «, 3 because the
threshold does not appropriately adapt for a smaller value
of «, 3. An increasing value of k improves the DR, while
the FAR is also increased. ACC observes no direct relation
with a, 3, or k as it relies on both true and false detections.

Detection Time: Another important evaluation criteria for
any detection method is the time it takes to detect the attack.
The detection time in our approach improves with increasing

window size. The detection time was under six and a half
seconds for all the experiments, and the average detection
time considering all the experiments was 4.15 seconds with
a standard deviation of 1.92 seconds.

Overhead: In our solution, the controller utilizes commonly
exchanged FLOW_STATS messages to obtain real-time traf-
fic statistics (in particular, to compute N, (¢)) for DDoS
detection. The induced overhead of our solution majorly
depends on the frequency of message exchange. To assess
the overhead, we configured the controller to exchange mes-
sages every second on a system with Intel Core 15-7200U
CPU @ 2.50 GHz x 4 processor. The measured CPU overhead
due to message exchange was nearly 11%. We believe that
the reported overhead is not an issue since in a real-network
scenario, the controller runs on a dedicated resource-rich
server grade system.

VII. CONCLUSION AND FUTURE WORK

SDN provides a simpler network administration with more
flexibility as compared to the traditional networks. There
are several security-related concerns in SDN, which are still
required to be solved. In this work, we have proposed a
framework that is capable of detecting various fundamentally
different DDoS attacks in SDN. As shown by the results, the
proposed approach is not only effective, but it can also be
tuned on various parameters to fit vast security requirements,
e.g., high DR, low FAR.

In the future, we will extend our approach to find a feasible
way to mitigate an attack after its detection. We would also
extend our approach to multi-domain networks containing
more than one SDN controller. It would be interesting to
investigate the detection and mitigation of DDoS attacks where
multiple SDN controllers can communicate with each other
over dedicated (e.g., EAST/WEST bound) interfaces.
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