
A Man-in-the-Middle Attack Against OpenDayLight
SDN Controller

Michael Brooks Baijian Yang

Department of Computer and
Information Technology

Purdue University
West Lafayette, IN 47906

{brooks23, byang}@purdue.edu

ABSTRACT
In this paper, we investigated the vulnerabilities surrounding
software-defined networking (SDN). Specifically, we examined
the vulnerabilities of OpenDayLight SDN controller. Among all
the possible attack vectors, a man-in-the-middle attack using ARP
poisoning was successfully launched to intercept the traffic
between a client and the OpenDayLight controller. Details of the
experiment method, procedures and results were described in this
manuscript. To the best of our knowledge, this is the first
successful practical attempt to penetrate an SDN controller and be
able to capture login credentials of the controller. The
significance of this attack should not be taken lightly; once the
SDN controller is under the control of the adversary, there will be
no security at all for the entire network governed by this
controller.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Invasive software
C.2.0 [Computer-Communication Networks]: General:
Security and Protection

General Terms
Performance, Design, Reliability, Experimentation, Security,
Verification.

Keywords
SDN, Open Daylight, Man in the middle, Security

1. INTRODUCTION
With any new technology, there will be risks. Whether that new
technology thrives or not is based largely on whether its potential
outweighs the consequences of those risks. In the world of
computer networking, these risks can be magnified due to the
nature of the environment. The networks we build cannot simply
be fast or optimized in 2015, they must also be secure. As
consumers begin to trust more and more sensitive data to Cloud

networks, and the Internet in general, security must become one
of the determining factors in whether a new technology lives or
dies.

One such new technology is software-defined networking (SDN).
The ideas and concepts SDN introduces to the networking world
are desirable, to say the least. While SDN would not make old
networking methods obsolete, it would begin to usher in a new
age of networking should it become fully adopted by the IT
world. As it stands, SDN looks to become an $8 billion market by
the year 2018 [1]. The concerning part in this is that it is still
widely accepted that there are serious security flaws in SDN
[2][3][4]. Most notably, the controller in an SDN is centralized,
which works well for SDN, but also provides a central attack
vector. If the controller is compromised in an SDN, it is likely
that the entire network will be compromised along with it. This is
simply the nature of SDN, and no solution has been set forward
yet at this time.

It is not the intention of this work to solve the security flaws of
SDN controllers. Instead, it looks to solidify the fact that there is a
problem with a controller through the means of a man in the
middle (MitM) attack. If successful, a MitM attack could be
devastating for an SDN given the nature of MitM [5]. Ultimately,
the point of this paper rests in two questions:

 Can a man-in-the-middle attack be executed
successfully on an SDN controller?

 Can a man-in-the-middle attack be executed on an SDN
controller in such a way that it compromises the entire
network?

The rest of the paper is organized as follows. In Section2, key
concepts and terms, such as SDN, SDN security, ODL, MITM
will be visited and explained. The methodology and the setup of
our expletory efforts are then described in Section 3, followed by
the results and discussions in Section 4. Potential counter
measures are then highlighted in Section 5. Finally paper
concludes in Section 6 with recommendations and future work.

2. LITERATURE REVIEW
2.1 SDN Overview
It is important first to understand exactly the term Software-
Defined Networking (SDN) we are investigating in this work.
Computer networking hardware involves devices like routers,
switches, and access points. Currently, these devices provide
functions that belong to both data plane and control plane: a
device contains the hardware that moves the data forward (data

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
RIIT'15, September 30-October 03, 2015, Chicago, IL, USA
© 2015 ACM. ISBN 978-1-4503-3836-3/15/09…$15.00
DOI: http://dx.doi.org/10.1145/2808062.2808073

45

plane) and also contains the software to make the forwarding
decisions (control plane). The drawbacks of the current network
paradigm include, but not are not limited to, high costs, slow
innovations, limited network topology awareness, and the fact
that they are difficult to manage at a large scale. It also suggests
that a network professional must learn each different proprietary
OS of network devices of different brands and configure each
device separately [6].

SDN, though not a totally new concept, is revolutionary because
it separates the control plane and the data plane. This separation
suggests that off-the-shelf commodities can be easily
implemented to be the heavy duty workers in the enterprise
environment. Together with the ever popular open source SDN
controllers, organizations can easily plug in and customize
appropriate middle ware modules, such as custom IDS/IPS
systems. In the control plane, one of the major benefits of SDN
controllers is the awareness of the network topology: more in-
depth knowledge of who is connected to who at what capacity not
only provides means for traffic engineering but also offers
additional ways to fight network attacks such as DDoS [15].

From the perspective of network administrations, the network
management will be different too. Instead of connecting and
logging into each router and switch to manually configure each
separate interface, VLAN, and routing protocol, the SDN
approach enables configuration to be done from a central control
server. That ability alone makes SDN appealing. In addition to
basic router configurations, SDN allows for the creation of flow
tables, which let you essentially control anything related to the
data traveling on your SDN [6].

2.2 OpenDaylight (ODL) Controller
Within SDN, there are several different variations of the
controller. This work does not mean to single out one specific
SDN controller against the penetration test. The reason ODL was
chosen for the study was mainly because it is open source and it is
built for the enterprise environment, which means it has greater
impact to the progression of SDN controllers. In addition, ODL is
easy to install and test in the lab environment. It also allows fast
deployment from the lab environment to the production
environment.

In particular, we investigated the Helium release, which was the
newest release we could get at the time of experiment. ODL
defines itself as “an open platform for network programmability
to enable SDN and NFV for networks at any size and scale [7].”
One interesting note is that ODL does not come with any security
plug-ins preinstalled. In fact, the only security defense it really
provides is something called Defense4All, which runs on a
machine separate from the controller and “communicates with
OpenDaylight Controller via the ODC north-bound REST API
[8].” The main purpose of Defense4All is DDOS prevention.

2.3 SDN Vulnerabilities
There have been many papers written already about possible
vulnerabilities in SDN. In [2], Kruetz summarized seven attack
vectors including forged traffic flows, attacks on switches, attacks
on control plane communications, attacks on controllers, attacks
on applications, attacks on administrative stations and the lack of
trusted resources for forensics and remediation. These attack
vectors are visualized respectively in Fig. 1.

In this work, we focus on two threat vectors in our investigation.
Listed as threat vector three and vector four in [2], “attacks on
control plane communications” and “attacks on and
vulnerabilities in controllers” were examined and investigated in
our lab environment (the other attack vectors were not pertinent to
this experiment). Both of these vulnerabilities are specific to
SDN, which makes them particularly interesting to study in that
they cannot be observed through testing on a normal enterprise
network. They also magnify why controller security is such a
huge issue in SDN.

 With vector three, there is a huge issue in that
communication is not secured between the controller
and SDN devices. This allows for exploration of said
communications, which can have devastating effects on
the network. Most notably, this could allow for DoS or
MitM attacks to occur.

 Vector four is the main threat here, though. Any
vulnerability or security fault in the controller itself
compromises the entirety of the network. If the
controller is taken over by a malicious entity, there is no
actual limit on what that person could do to the
network. This should be a huge red flag. As of yet, there
is no concrete solution to fix this issue in SDN.

Figure 1. SDN vulnerability map [2]

2.4 Man-in-the-Middle Attacks on SDN
The attack that we focus on in this paper is a Man-in-the-Middle
(MitM) attack. The basic premise behind a MitM attack is that,
somehow, a third party inserts his or herself between two
endpoints in a network, normally a client and that client’s
gateway. In this way, all traffic from the client destined for the
Internet must now travel through the third party [5]. This allows
the attacker to inspect all traffic sent from the client, possibly
gathering things like login credentials to sensitive websites. MitM
attacks could exist at all seven layers the OSI networking model.
More practically, they are often found at layer 2 by means of ARP

46

poisoning, at layer 5 by means of session hijacking, and at layer 7
by taking advantages of security flaws of network applications.

The idea of a MitM attack taking place on an SDN controller is
one that could cause serious issues for SDN moving forward. In
fact, there have been successful attempts at perpetrating such an
attack as demonstrated in [3] with their MitM attack. However, in
that experiment, it was assumed that the host was already
compromised. The premise of a MitM attack is that it should only
be deemed successful if you can accomplish the first step of
compromising the host, and only then doing packet-sniffing; if
you cannot first compromise the host (i.e. controller), then the
MitM attack is essentially nullified.

The MitM attack described in this work however does not assume
the host needs to be compromised and the consequences of the
attack are simply devastating: the attacker will be able to sniff the
login credentials to potentially take full control of the entire
network.

3. METHODOLOGY
In this experiment, it was assumed that the controller would be
hosted in a remote-office setting, defined in [4] as particularly
vulnerable as it would often be less focused on security
procedures. The attack executed in this experiment could still be
possible in a more secure, enterprise environment; however, it is
far less likely given the necessity to be on the same network
segment as the controller.

3.1 Experiment Setup
In this experiment, three physical machines were used. Fig. 2
details the separate machines and how they were connected.

One machine, running CentOS 6.4, hosted the ODL Helium
controller. In this instance, ODL was installed with all default
features. However, one extra feature (L2 Switch Component) was
installed to allow for access to the ODL DLUX web interface [9].

The second machine hosted an instance of Kali Linux installed on
a USB drive. No special features were added to Kali for this
experiment. The only tool used within Kali that was ettercap.
This one tool was used to: 1) initially perform an ARP-cache
poisoning attack (the most common version of a MitM attack) on
the controller; 2) perform traffic sniffing; 3) attempt to capture
login credentials to the DLUX web interface.

The third machine was a neutral machine running Windows 7
used to access the DLUX web interface from outside the LAN
segment hosting the ODL controller.

Figure 2. Experiment setup

No SDN switches were used in this experiment. It was deemed
unnecessary as the experiment focused solely on whether or not
the controller itself could be compromised from the outside, and
not through switch traffic. Refer to the MitM attack performed in
[3] for an attack done using switch traffic.

3.2 Kali Linux Tools
Only one tool found in Kali Linux was used during this
experiment. The most useful of the tools proved to be ettercap.
Kali provides several ways to successfully execute a MitM attack
through ARP poisoning, but ettercap seemed to be the easiest
method for doing so. ettercap provided means for traffic capturing
and password sniffing as well. For this experiment, it proved to be
an extremely powerful and useful tool.

ettercap was edited in several ways to facilitate this experiment.
First, etter.conf had to be edited to allow for packet forwarding. If
this had not been done, as soon as the MitM attack started
executing the attack target, i.e. the SDN controller, would
instantly lose its network connection. This was not feasible for
this experiment where the aim was to both capture network traffic
to and from the controller, as well as capturing login credentials
to a web application.

etter.conf also had to be edited to specifically sniff specific ports
in order to capture login credentials. Normally, ettercap only
sniffs TCP port 80 for HTTP traffic. This is logical as nearly all
HTTP traffic is transferred using that port number. However, it is
possible to transfer HTTP traffic over a different port if specificed
by the traffic origin. This is the case with ODL and its DLUX
web interface. Instead of using port 80, it used the ports 8080 and
8181. etter.conf was therefore edited to sniff HTTP traffic on
these ports as well.

3.3 ODL Controller Setup
For this experiment, nothing particularly out of the ordinary was
configured on the controller. The controller, Open Daylight
Helium (their newest release) was downloaded and installed on
top of a machine running CentOS 6.4. Once installed, one
package was added to ODL to enable the DLUX web interface,
that package being the L2 Switch component. After basic
installation and installation of the L2 Switch component, the
DLUX web interface could be accessed from the neutral host.

4. RESULTS
As has been previously stated, the two goals of this experiment
were to capture traffic, and if traffic could be captured, also use
that traffic to compromise the controller in some manner. The
manner chosen here was to attempt to capture the login
credentials to the DLUX web interface. Both of these goals were
met successfully.

4.1 Traffic Capture
Through ARP poisoning, all traffic destined for and originating
from the ODL controller had to first pass through the Kali Linux
box. This allowed for the capture of that traffic. Fig. 3 shows
some of that traffic relating to the DLUX web interface on the
controller.

47

Figure 3. ODL controller traffic

In Fig. 3, it should be noted that 10.3.2.151 corresponds to the
neutral host initiating the connection on the DLUX web interface,
while 10.24.54.2 corresponds to the ODL controller.

From this information, it was determined that DLUX was not
using TCP port 80 for its HTTP traffic, instead using ports 8080
and 8181. It should also be noted that the DLUX web interface
used HTTP to communicate with the controller, not HTTPS. This
information was further used to sniff login credentials for the
DLUX web interface.

Armed with the knowledge of which ports ODL and DLUX were
using for HTTP traffic, etter.conf was configured to sniff these
ports, along with port 80 for HTTP traffic. Fig. 4 shows this
configuration.

Figure 4: etter.conf port configuration

4.2 Credential Capture
With etter.conf configured properly, login credentials could be
sniffed using the same methods for traffic capture [10]. Fig. 5
shows these login credentials successfully captured.

Figure 5. Credential capture

With this login information, the DLUX web interface can be
accessed. From this, the network can be manipulated and
changed. While this provides additional functionality for the
controller, it can also be seen as a weakness if it can be exploited.
If an attacker can gain access to the web interface, it could be
disastrous for the SDN as a whole.

5. DEFENSE MEASURES
Perhaps the most alarming part when dealing with MitM attacks is
that they are very hard to detect once they've already occurred.
Therefore, it's best to detect and prevent MitM attacks before
they've been successfully executed. Thankfully, a number of tools
have come out of the past few years to help deal with and detect
ARP poisoning attacks like the one used in this experiment.

There have been a number of tools developed to help dealing with
ARP poisoning attacks as they can be particularly devastating if
carried out successfully. Some of the better tools include Snort,
ArpAlert, and ArpwatchNG [11][12][13]. In the cases of ArpAlert
and ArpwatchNG, the tools can be installed directly onto the
Linux host that the controller is also installed on.

ArpAlert is pretty simple in its operations. It looks at all of the
ARP traffic on a specific interface, and then makes sure the MAC
address to IP address mapping matches a preconfigured, static list
of mappings. If the mapping is not present in the preconfigured
list, the program then runs a predefined script to handle the
possible attack taking place.

ArpwatchNG is similar to ArpAlert, in that it monitors the MAC
addresses being used on the network. These MAC addresses are
then written into a file with timestamps and change notifications.
No actions are carried out on behalf of the program though, unlike
ArpAlert; it is up to the network administrator to notice anything
malicious in the file tracking the MAC addresses being used.

Snort is a bit more involved a method than the previous two.
Snort is an intrusion prevention system (IPS), designed to detect a
multitude of attacks. One of the tools included in Snort is an ARP
Spoof Preprocessor [14], which performs the same actions as
ArpAlert, but on a larger scale (i.e. watches your entire network
for ARP attacks). Using Snort, or a similar IPS, is probably the
best chance one would have of detecting the attacks used in this
experiment, and preventing them from occurring. This would
involve setting up an IPS (something most enterprise networks
should already have), and configuring it with an interface on the
same network as the SDN controller. Note that Snort was not used
and configured at all in the experiment described in the paper. It is
simply speculative that it would provide the best defense at
detecting and preventing the ARP attack used.

Another defense strategy one can use is to always use a
cryptographically sound method for mutual authentications of
both communication parties whenever it is feasible. In particular,
we are surprised that the OpenDayLight User Experience (DLUX)
component that carries user login information was implemented
over HTTP, not HTTPS. This suggests software developers
should ban HTTP for mission critical tasks at all costs and system
administrators should enforce an HTTPS only policy for all
critical network traffic.

6. CONCLUSIONS
SDN is a rapidly growing technology. The potential it provides to
the networking world is enormous. However, as with any new
technology, there are issues with SDN. This paper looked at some
of the security issues with SDN, focusing closely on the issues
surrounding the controller.

In a software-defined network, the controller stands as a central
point of failure for if it can be compromised. This paper shows
that it is possible in at least one aspect. Through a man-in-the-
middle attack, it is possible to capture enough information to

48

compromise the controller. With the controller compromised, the
network can be manipulated in any way the attacker chooses.

Some considerations should be made here, though. First, the
DLUX web interface is specific to OpenDaylight. This project
focused solely on the ODL Helium controller, thus can only make
statements about that distribution. Second, the DLUX interface is
not installed by default in ODL. It had to be enabled by installed a
separate component. The DLUX web interface simply provides
some extra functionality to ODL by providing visualizations for
the network configuration. It is not necessary in ODL for SDN
operations.

However, this project assumes that ODL would have DLUX
enabled, and shows the vulnerabilities if it is enabled. Currently,
ODL has the possibility for DDoS protection through the
installation of the Defense4All plug-in. However, that plug-in
does not provide MitM attack protection. In fact, protecting
against ARP poisoning can be very difficult, and there aren't a lot
of methods for successfully preventing it. One method is to
statically set the ARP value for the gateway on the controller
machine. This paper and experiment did not explore prevention
methods, though, so cannot account for the validity of this method
in stopping the MitM attack performed herein.

Controller vulnerabilities are a serious issue that SDN developers
must address in the coming months and years. Without a totally
secure controller, SDN adoption will likely be deterred in industry
settings.

It is expected that vulnerabilities like the one described in this
paper will have been dealt with in some manner in the near future.
However the lessons we learned from this project, once again,
proved that a system is as secure as its weakest link. In the case of
this investigation, the DLUX feature, as it currently stands, is the
weakest spot in the implementation. Though this is not a must-
have component in ODL architecture, the compromise of DLUX
could potentially generate significant harm to the overall system.
This reminds us, caution must be taken whenever a new
component needs to be added to system. And the security should
be considered when the system is designed, not an after-thought
or a patch.

In the future, we would like to employ more applied approaches
to further investigate the vulnerabilities that are specific to the
SDN controllers and architecture. Recommendations and best
practices will be made from our future study to help the industry
safe guard their future network infrastructure.

7. REFERENCES
[1] Ramel, D. (2014). Explosive Growth Forecast for Software-

Defined Networking. Virtualization Review.
https://virtualizationreview.com/articles/2014/08/21/sdn-
growth-forecast.aspx

[2] Kreutz, D., Ramos, F., and Verissimo, P. (2013). Towards
Secure and Dependable Software-Defined Networks.
Proceedings of the second ACM SIGCOMM workshop on
Hot topics in software defined networking (pp. 55-60).

[3] Hong, S., Xu, L., Wang, H., and Gu, G. (2015). Poisoning
Network Visibility in Software-Defined Networks: New
Attacks and Countermeasures. NDSS 2015.

[4] Benton, K., Camp, L. J., & Small, C. (2013). Openflow
vulnerability assessment. In Proceedings of the second ACM
SIGCOMM workshop on Hot topics in software defined
networking (pp. 151-152). ACM.

[5] Callegati, F., Cerroni, W., & Ramilli, M. (2009). Man-in-the-
Middle Attack to the HTTPS Protocol. IEEE Security and
Privacy, 7(1), 78-81.

[6] McKeown, N. (2009). Software-defined networking.
INFOCOM keynote talk, 17(2), 30-32.

[7] (2015). Open Daylight.
http://www.opendaylight.org/software

[8] (2014). Defense4All:User Guide.
https://wiki.opendaylight.org/view/Defense4All:User_Guide

[9] (2014). Open Daylight Installation Guide.
https://www.opendaylight.org/sites/opendaylight/files/bk-
install-guide-20141002.pdf

[10] Encarnacion, L. (2014). Perform A Man In The Middle
Attack With Kali Linux & Ettercap.
http://lewiscomputerhowto.blogspot.com/2014/03/perform-
man-in-middle-attack-with-kali.html

[11] (2008). ArpAlert. http://www.arpalert.org/arpalert.html

[12] (2012). Arpwatch-NG-VLAN.
https://github.com/SgtMalicious/Arpwatch-NG-VLAN

[13] (2015). Snort. https://www.snort.org/

[14] Esler, Joel. (2012). ARP Spoof Preprocessor.
http://manual.snort.org/node151.html

[15] Nick Feamster, Jennifer Rexford, and Ellen Zegura. 2014.
The road to SDN: an intellectual history of programmable
networks. SIGCOMM Computer. Rev. 44, 2 (April 2014),
87-98. DOI= http://doi.acm.org/10.1145/2602204.2602219

49

