=
g
i
[=

HESC

Volume 7 Issue No.6

Early Detection of DDoS Attacks in a Multi-Controller Based SDN

Dr.T.Pandikumar?, Frew Atkilt?, Capt.Abdulkadir Hassen®
Associate Professor', M.Tech Student?, Lecturer®
Department of Computer & IT
College of Engineering, Defence University, Debre Zeyit, Ethiopia

ISSN 2321 3361 © 2017 IJESC

Research Article

Abstract:

Networks used to depend on hardware devices which have the control and data plane in a single plane. This made networks
susceptible to failure because if the hardware fails the network stops. This is the reason software defined network structure has
come into existence. By separating the control plane from the data plane, software-defined networking offers several benefits for
networking. But that didn’t mean software-defined networking solves every problem in the network. Areas like networks’
scalability, reliability and availability remain as the issues yet to be addressed. The main concept behind SDN is the separation of
the network’s control and forwarding planes with the control plane moved to the centralized controller, which provides an ideal
platform for distributed detection and mitigation of DDoS attacks. This research work takes advantage of this special ability of
SDN to propose a solution with an implementation running at the multi-controller to detect DDoS attack at the early stage. The
method not only can detect the attacks but also identify the attacking paths and start a mitigation process to provide protection for
the network devices the moment an attack is detected. The proposed method is based on the entropy variation of the destination
host targeted with its IP address and can detect the attack within the first 250 packets of malicious traffic attacking a particular

host in the SDN.
Keywords: DDoS attack, Entropy, Multi-controller, SDN
1. INTRODUCTION

Networking principles have remained mostly unchanged over
the past decade. Networks are built using more or less
sophisticated switches and routers. These devices are being
developed by tens of vendors usually using proprietary
operating system and interfaces. Building heterogeneous
networks on devices from different vendor’s means that
organization has to employ a specialist on every router brand.
Configuration of different systems also increases the
probability of configuration mistakes. This issue coupled with
incompatibility of different versions of systems from one
vendor makes heterogeneous networks difficult or very
expensive to manage. There is a need for a new technology to
make networks more scalable, dynamic and to allow easier
management of network devices from different vendors. These
needs could be fulfilled by programmable networks, i.e., by
Software Defined Networking (SDN) (Martin Vizv'ary,
January 2015). SDN could replace traditional networking. It
is based on the abstraction of a control and a data plane. The
main idea is to produce less sophisticated data plane devices,
e. g., switches, which only forward the traffic according to a
set of rules defined by the software in the control plane. This
should remove the differences in proprietary interfaces of
devices and makes the network administration independent of
data plane devices vendors. SDN also enables applications and
network services to treat the network as one logical entity and
grants unified access to all devices through the SDN control
plane. This opens the upper layer of the network to software
that can manage how traffic in the network is forwarded. The
research in the field of SDN and general security in SDN is
still in its early phase. The SDN will not erase the DDoS
attacks from the Internet. Moreover, every new technology
and level of abstraction opens new attack vectors. However,
we believe that the attributes of SDN can help to detect and
mitigate the attacks.

International Journal of Engineering Science and Computing, June 2017

Our research will be dedicated to analysis of security
challenges in SDN from the point of view of DDoS attacks
and development of a new DDoS attacks mitigation technique.
We believe that SDN gives us a new powerful tool against
DDoS attacks. The higher flexibility and easier management
of networks could be a powerful tool for detection and
mitigation of DDoS attacks. However, one should be aware of
upcoming security threats accompanied with the deployment
of SDN. The research focused on the security in SDN is still in
its early phase. This research focused on the security of the
data plane, security of the control plane, security of the
communication between these planes and on enhancing the
network security using SDN, which is also our goal. The result
of our research is going to be a novel method for mitigation of
DDoS attacks using the benefits of Software Defined
Networking, which enhance the network security.
Combination of the existing detection methods and
management of SDN forms a new way of DDoS mitigation in
future networks.

1.2 Statement of the Problem

SDN is a new networking approach that is introduced with the
goal to simplify the network management by separating the
data and control planes. SDN has brought with itself
programmability in the network control plane. The shift of the
control logic from networking devices, such as switches and
routers, in traditional networks to a centralized unit known as
the controller permits the physical network hardware to be
detached from the control Plane. This separation simplifies the
design of new protocols and implementation of new network
services such as access control, QOS, enforcement of new
policies, bandwidth management, traffic engineering and etc.
No longer does every small change need to come at the cost of
reconfiguring all the network devices. The SDN networks and
its controller can be seen as slice of the network. We are
focusing on each of these slices to protect it against DDoS. If

13422 http://ijesc.org/

the connection between the switches and the controller is lost,
the network will lose its processing plane. That means packet
processing is no longer done in the controller and by losing the
controller, the SDN architecture is lost. The aim of this
research is detecting a DDoS attack in its early stages. The
term early depends on the network itself. Since the controller
software can be run on a laptop or a powerful desktop, the
term early would depend on the tolerance of the device and
traffic properties. However, if the detection happens in the
first few hundred packets, the mitigation is applied before the
controller is completely swamped with the large number of
malicious packets. To accomplish this goal, a fast and
effective method is needed that works within the controller. At
the same time, it must be lightweight to avoid excessive
processing power usage, specially, at the peak of an attack.

1.3 Objective of the Study

1.3.1 General objective

The general objective of this research work is to Early Detect
DDoS attacks by using multi-controller Software Defined
Networks.

1.3.2 Specific objectives

e In order to achieve the aforementioned general objective the
following specific objectives need to be achieved:

e Detection of attack in a multi-controller SDN structure.

¢ To analyze mitigation of the attack.

e To develop a prevention mechanism to avoid DDoS attack in
its initial stage before harming our network.

o Implement the proposed mechanism using Mininet.

1.4 Scope of the Study

e Find a solution to detect DDoS in SDN before it overwhelms
the controller.

¢ Proposed a lightweight and fast DDoS detection mechanism
based on entropy, to protect the controller.

e To Show the effectiveness of the solution through extensive
simulations.

1.5 Limitation of the project

The Proposed Policy will be implemented in simulator. The
Attack is only concentrating on traffic attack sending a huge
volume of TCP, UDP and ICMP packets to the target.

1.6 Significance of the study

In order for SDN to deliver on its full promise, it must be
enabled by open networking standards that can be easily
integrated with current infrastructures. Adopting an SDN
methodology has a myriad of benefits including flexibility,
scalability, redundancy, and performance. In a traditional
network, there might be certain limited hardware and software
pieces. When a network requires additional resources, there
will be considerable cost in buying new hardware and
licensing. With SDN, the network is abstracted onto software,
leaving more choice and flexibility in purchasing hardware. In
addition, a growing network can be more easily supported by
SDN because a network administrator or engineer can simply
add more virtual switches or routers rather than purchase
costly equipment and licensing.

11. SDN AND OPEN FLOW ARCHITECTURE
2.1 Introduction

This chapter provides discussion on fundamental concepts of
the study. This chapter is organized into four main sections.

International Journal of Engineering Science and Computing, June 2017

The main important points of the chapter consists an in depth
study of the Software Defined Networks, SDN Controller,
Open Flow Protocol and DDoS Attacks.

2.2 Software Defined Networks

Software-defined networking (SDN) is an approach to
computer networking that allows network_administrators to
manage network services through abstraction of lower-level
functionality. SDN is meant to address the fact that the static
architecture of traditional networks doesn't support the
dynamic, scalable computing and storage needs of more
modern computing environments such as data centers. This is
done by decoupling or disassociating the system that makes
decisions about where traffic is sent (the control plane) from
the underlying systems that forward traffic to the selected
destination (the data plane).

APPLICATION LAYER

Business Applications

API IAF‘: APl
Network
Network Services

CONTROL LAYER

Services

b OpenFlow
INFRASTRUCTURE
LAYER L
- =
-
=
- <=

Figure.l. Software Defined Networking (SDN) Framew
Software-defined networking (SDN) is an architecture
purporting to be dynamic, manageable, cost-effective, and
adaptable, seeking to be suitable for the high-bandwidth,
dynamic nature of today's applications. SDN architectures
decouple network control and forwarding functions, enabling
network control to become directly programmable and the
underlying infrastructure to be abstracted from applications
and network services (Open Networking foundation, 2017).
Software-defined networking (SDN) has gained a lot of
attention in recent years, because it addresses the lack of
programmability in existing networking architectures and
enables easier and faster network innovation. SDN clearly
separates the data plane from the control plane and facilitates
software implementations of complex networking applications
on top. There is the hope for less specific and cheaper
hardware that can be controlled by software applications
through standardized interfaces. Additionally, there is the
expectation for more flexibility by dynamically adding new
features to the network in the form of networking applications.
This concept is known from mobile phone operating systems,
such as Apple’s iOS and Google’s Android, where “apps” can
dynamically be added to the system (Wolfgang and Michael,
2014).

The SDN architecture is:
o Directly programmable: Network control is directly

programmable because it is decoupled from forwarding
functions.

13423 http://ijesc.org/

e Agile: Abstracting control from forwarding lets
administrators dynamically adjust network-wide traffic
flow to meet changing needs.

e Centrally managed: Network intelligence is (logically)
centralized in software-based SDN controllers that
maintain a global view of the network, which appears to
applications and policy engines as a single, logical switch.

e Programmatically configured: SDN lets network managers
configure, manage, secure, and optimize network resources
very quickly via dynamic, automated SDN programs,
which they can write themselves because the programs do
not depend on proprietary software.

2.2.1 SDN Architecture

SDN architecture contains six major components. First is the
management plane, which is a set of network applications that
manage the control logic of a software-defined network.
Rather than using a command line interface, SDN-enabled
networks use programmability to give flexibility and easiness
to the task of implementing new applications and services,
such as routing, load balancing, policy enforcement, or a
custom application from a service provider. It also allows
orchestration and automation of the network via existing APIs.
Second is the control plane that is the most intelligent and
important layer of an SDN architecture. It contains one or
various controllers that forward the different types of rules and
policies to the infrastructure layer through the southbound
interface.

Third, the data plane, also known as the infrastructure layer,
represents the forwarding devices on the network (routers,
switches, load balancers, etc.). It uses the southbound APIs to
interact with the control plane by receiving the forwarding
rules and policies to apply them to the corresponding devices.
Fourth, the northbound interfaces that permit communication
between the control layer and the management layer are
mainly a set of open source application programming
interfaces (APIs). Fifth, the east-west interfaces, which are not
yet standardized, allow communication between the multiple
controllers.

They use a system of notification and messaging or a
distributed routing protocol like BGP and OSPF. Sixth, the
southbound interfaces allow interaction between the control
plane and the data plane, which can be defined summarily as
protocols that permit the controller to push policies to the
forwarding plane. The OpenFlow protocol is the most widely
accepted and implemented southbound API for SDN-enabled
networks (Othmane, Mouad, and Redouane, 2016).

2.2.2 SDN Controllers

One of the core ideas of the SDN philosophy is the existence
of a network operating system placed between the network
infrastructure and the application layer. This network
operating system is responsible for coordinating and managing
the resources of the whole network and for revealing an
abstract unified view of all components to the applications
executed on top of it. This idea is analogous to the one
followed in a typical computer system, where the operating
system lies between the hardware and the user space and is
responsible for managing the hardware resources and
providing common services for user programs. Similarly,
network administrators and developers are now presented with

International Journal of Engineering Science and Computing, June 2017

a homogeneous environment easier to program and configure
much like a typical computer program developer would.

I1l. LITERATURE SURVEY

3.1 Introduction

DDoS Attack have recently recognized as one of the most
threats to the SDN based networks. Many researches have
been conducted to analyze and detect DDoS Attack and the
results of these researches contributed to security enhancement
and draw new idea on strengthening the detection of DDoS
Attack in SDN based networks. In this chapter, previous
research works which are directly or indirectly related to this
study are reviewed. The area of focus and limitations of these
works are also discussed.

3.2 Reviewed Literature

One of the works published on the subject matter of Detection
of DDoS Attacks in SDN Controller is a paper titled as “Early
Detection of DDoS Attacks in Software Defined Networks
Controller” by Seyed Mohammad (2015). In his solution,
randomness of the incoming packets is measured. A good
measure of randomness is entropy. Entropy measures the
probability of an event happening with respect to the total
number of events. For instance, in a network of 64 hosts, all
hosts should have a reasonably close probability of receiving
new incoming packets. This will results in, reasonably, high
entropy. New packet, in the sense that there is no flow for it in
the switch table and it has to be sent to the controller to be
validated for a new flow. If one or a humber of hosts starts to
receive excessive incoming packets, the randomness decreases
and entropy drops. This research makes use of this property of
entropy to detect an attack at its early stages. Based on the
tests that are done in this research, we choose a threshold for
entropy and lower values will be considered as attacks. Being
programmable is one of the major advantages of SDN. Any
time the network configuration changes, the threshold can be
adjusted. And, it can be adjusted while the network is running
live traffic so there is no restriction. Depending on the
network, the entropy can be of the destination IP address,
VLAN tag, destination port or any other applicable field. If it
is lower than the set threshold, it will be considered an attack.

The need of Entropy

When packets arrive at the controller, the source address is
always new. This is the reason they come to the controller.
There has not been an instance of them in the table of the
switch so they are passed on to the controller. For every new
incoming connection, the controller will install a flow in the
switch so that the rest of the incoming packets will be directed
to the destination without further processing. The other known
fact about the new packets coming to the controller is that the
destination host is in the network of the controller. The
network consists of the switches and hosts that are connected
to it. Knowing the packet is new and the destination is in the
network, the level of randomness can be quantified by
calculating the entropy based on a window size. The window
size is the number of incoming new packets that are used for
calculating entropy. In this case, maximum entropy occurs
when each packet is destined to exactly one host. Minimum
entropy occurs when all the packets in a window are destined
for a single host. The paper also discusses the possibility of
losing the controller and identifies the need for a backup one.
The paper proposes a second controller that runs in parallel to
the current running controller. If the switches lose connection
to the controller, they will look for the second controller,

13424 http://ijesc.org/

which is added to the configuration of the switch. One of the
mentioned scenarios is losing the controller in a DDoS attack.
Figure 2 shows running two controllers in parallel. The first
controller will continuously send status updates to the backup
controller announcing that it is alive. If the first controller goes
to an unknown state or becomes unreachable, the second
controller will take control and starts running the network

normally.
Hosts | OF switch | [prmary | [Backup |
® State update mes age
T A
Time
. n
| N
Handrale P———
VL ‘t .:r

Figure .2. Two controllers for resiliency in Open flow

The Paper by Sandeep Singh, R.A. Khan and Alka Agrawal
(2015) developed four steps strategy to avoid the attack from
being happen. According to the first step by increasing the
available queue size for incoming packets and simply direct
them to wait until the queue becomes empty. This will give
some relaxation to the traffic handling. After applying this
step if still the traffic is continuously increasing and the
buffering policy came in to failure mode then it shall go for
the second step. Setting Timer/ Time stamping: when
buffering does not work they use timer for a particular source
of IP address. The IP of generated traffic can be easily
identified and marked for time stamping. This time stamping
policy is simply like debar a particular source of IP for some
specified time limit. By setting a timer in the Visual Network
Description (VND) scenario they can block a particular IP for
some time interval. In this way other users can smoothly
communicate with servers of SDN network and a specified IP
will be put on hold for some time. After specified time limit
has reached controller automatically allow all sources to
transfer data. In this way if the problem resolved then we have
nothing to worry if still a heavy traffic is coming it
reconfirming about something is wrong there in network. In
this situation it shall go for the third step of mechanism.
Warning cum request packets: when none of the policy is
working it replicates about the confirmation of attack. In third
step it shall generate an Eco request packet to the specified
source of IP to slow down the transfer rate of sending traffic.
This warning message will be applied thrice for slowing down
the rate of packet transfer. If at this stage the particular source
of IP did not slow down the rate of sending traffic it is
identified that a particular source of IP is an attacking point
and some strict action must be taken against it. In the fourth
step after applying the above policies to make sure about an
attack is happening it simply trace back the source and block
this IP by sending a command to the controller. After applying
the mechanism developed for prevention of Infrastructure
based DoS attack the link congestion is avoided at its early
stage and servers are also secured by getting into deadlock.
The Paper by Nayana Y, Mr.JustinGopinath and Girish.L
(June 2015) tried to mitigate DDoS attack with SDN

International Journal of Engineering Science and Computing, June 2017

Controller. The SDN controller detects the DDoS attack by
using threshold value and helps to remove DDoS attack in the
network. In their project they are providing security challenges
in DDoS attacks mitigation in SDN environment. The paper
uses for mitigation the output of developed DDoS detection
method. Selecting threshold value is necessary to help the
DDoS detection to make a good decision in identifying the
attacker at the fast attack especially. This value is helpful for
differentiating normal activity and abnormal activity in
network traffic. If we select inaccurate threshold value will
cause an excessive false alarm especially if the value is too
high or too low. Detecting the intrusion as quickly as possible
is very important to provide the security. The paper sets
threshold value, if the traffic i.e., number of packets crosses
the threshold value the controller will take action and mitigate
the attack immediately. Random policy used for balancing the
load. Balances the traffic to backend servers depend on the
source address and source port on every incoming packet.

IV.METHODOLOGY AND MATERIALS

In this chapter, we will describe how our work is organized.
We will give a detailed description of the materials and
methods used to get our results. This section gives you the
experimental setup of our study and the tools that we used.

41 Methods

4.1.1 Entropy Variation of Destination IP address

Entropy is a measure of uncertainty or randomness associated
with a random variable which in this case is the destination
address. A higher randomness will result in higher entropy.
The entropy value lies in the range of [0, log,m] where m is
the number of destination IP addresses. The entropy value is at
its minimum when all the traffic is heading to the same
destination. On the other hand the entropy value is at its
maximum when the traffic is equally distributed to all the
possible destinations (Maryam kia, 2015). In the normal
network state we expect that the traffic spreads out to many
different hosts. During a DDoS attack the number of packets
destined for a specific host or a small set of hosts rises
suddenly and the entropy decreases. A decrease in the entropy
is an alarm for the network to watch out for a possible attack.
Itis vital in SDN networks to have a fast detection method and
to detect the attacks at its early stages. SDN networks are more
vulnerable against the DDoS attacks than the traditional
networks. If the detection time takes too long the attacker
could break the switches or the controller and so an early
detection is extremely important. For an early detection the
window should not be too large. On the other hand a small
window will add to the computational overhead. As proposed
by Maryam Kia in this thesis we will use the window size of
fifty to balance the two concerns. A module is added to the
pox controller for the entropy calculations. For every fifty
packets that arrive in the controller the relative frequencies are
calculated. The calculated entropy is compared against the
threshold value. If the calculated entropy is less than the
threshold for five consecutive entropy calculations an attack is
suspected and further analysis will be performed to determine
if the attack is real.

4.1.2 Attack Mitigation

If a switch is reported as being under attack the algorithm
should try to mitigate the attack. A number of possible attack
mitigation approaches include installing flows in the attack
paths to drop packets until the attack is stopped or blocking
the incoming ports where the attack traffic is arriving at.

13425 http://ijesc.org/

Although all these methods will mitigate the attack and will
buy time for the network operators to find the attack sources
before the break down of the controller or switches the
adoptions of these methods will also affect the legitimate
traffic as much as the attack traffic and the network services
will become unavailable or respond slowly to legitimate
traffic. The controller is usually designed with high capacities
and therefore it will not crash very easily. The switches on the
other hand have limited resources and are not very robust
against attacks. When an attack is underway the flow table on
the switches will be filled with a large number of short flows
that will eventually break the switch. In the proposed
mitigation algorithm the flow idle timer will be changed from
the default value to the mitigated value to prevent the
breakdown of the switches. The mitigated value is smaller
than the default value; consequently, the short malicious flows
will time out quickly and are deleted from the switch flow
tables. The legitimate traffic flows on the other hand are
expected to have a longer connection with a larger number of
packets. If the mitigated value is chosen correctly it will not
affect the legitimate flow entries significantly but will clear
out the malicious flows quickly.

4.2 Materials

4.2.1 Pox Controller

There are few famous controllers available. The one that will
be used in this experiment is POX. Pox is widely used for
experiments; it is fast, lightweight and designed as a platform
so a custom controller can be built on top of it. It is an
improved version of its predecessor NOX, and both are
running on Python. POX works on Linux, Mac OS and
windows, and it has topology discovery. For completeness,
three other controllers should be mentioned. Floodlight is
another widely used controller that is open-source and written
in Java. One advantage of Floodlight is facilitating application
interface to the controller so they can run alongside it. Beacon
is another Java-based controller that is open-source and has
high throughput and low latency. Open Daylight controller is
the most recent addition to Openflow controllers. It meant to
be a common platform for all SDN users.

Table .1. Comparison of different SDN Controllers

POX RYU Floodlight | Open
Day
Light
Language Python Python | Java Java
OpenFlow v1.0 v1.0 v1.0 v1.0
Support 1.2,
1.3
OpenSource | Yes Yes Yes Yes
GUI Yes Yes Yes Yes
REST API No Yes Web GUI Yes
Platform Linux Linux Linux Linux
Support Mac Mac
Windows Windows

POX is an open source development platform for Python-
based software-defined networking (SDN) control
applications, such as OpenFlow SDN controllers. POX, which

International Journal of Engineering Science and Computing, June 2017

enables rapid development and prototyping, is becoming more
commonly used than NOX, a sister project.

4.2.2 Pox Configuration

The way POX initiate components, is to use the component
name as the argument. To use a pre-built L2 learning switch
component, we can use ‘forwarding.l2 learning’ as the first
argument.

A POX controller consists of three parts:
e Listener

e Control logic

e Messenger

4.2.3 Mininet

Mininet is the network emulator that will be used for this
experiment. It is the standard network emulation tool that can
be used for SDN. Mininet can prototype a network on a laptop
or PC by using kernel namespace feature. Network namespace
provides individual processes with their own network
interfaces, ARP tables and routing tables. Mininet makes use
of this feature of the kernel. It uses process-based
virtualization to run switches and hosts on the kernel. Large
networks with different topologies can be emulated and tested.
Mininet is a network emulator which creates a network of
virtual hosts, switches, controllers, and links. Mininet hosts
run standard Linux network software, and its switches support
OpenFlow for highly flexible custom routing and Software-
Defined Networking.

4.2.4 Scapy

Packet generation is done by Scapy. It is a very powerful tool
for packet generating, scanning, sniffing, attacking and packet
forging. Scapy is used here to generate UDP packets and spoof
the source IP address of the packets. The code for generating
random source IP addresses and host IP addresses is in
Python. The function “randrange” is used which is inheriting
the function “random”. This function produces a uniform
random float in the range [0.0, 1.0). This number shows a long
period of random number generation which will result in
generating random numbers with uniform distribution. These
numbers are joined together to form spoofed source IP
addresses. Two other parameters that we set in Scapy are: type
of packets and interval of packet generation. UDP packets are
used for both attack and normal traffic. The interval was set to
suit the test case. For instance, for an attack with 25% rate,
normal traffic interval is 0.1 seconds and attack traffic is
0.025. This gave us windows with 25% of packets destined to
one host.

V.SIMULATION RESULTS AND ANALYSIS

5.1 Simulation Scenarios

The simulation and testing of the proposed method for DDoS
attack detection is explained through the following sections.
The algorithm is implemented on the python based pox
controller in the Mininet virtualized network environment.
Scapy scripts are used to generate the legitimate and attack
traffics on the network hosts during the simulation.

5.1.1 Network Setup

The simulation is done on a Toshiba laptop with a dual core
processor, 1.7 GHz of power, 2GB of ram, and
10/100/100/1000Mbitps network interface. The operating
system is Linux Ubuntu 14.04 and Mininet version 2.0.0 was

13426 http://ijesc.org/

run native on Linux. Mininet 2.0.0 supports Open flow version
1.0. Using Mininet, a tree-type network of depth one with 3
controllers, 3 switches and 32 hosts was created. Figure 8
shows the network. OpenFlow is used for the network
switches.

Fle Edt Run Help

B

==l P

<@ m -

Q-
N o NN
2 €D

E
X
=
=
=

N

Run

sop |p =

Figure.3. Experiment Network with 5 switches and 32
hosts

5.1.2 Choosing Threshold Value

We use the same threshold value that is suggested from the
base paper. The detection mechanism in our solution dictates
that if the entropy is lower than the threshold, and it persists
for five windows in a row, an attack is in progress. The
experiments cover an attack to one host and a subnet of four
hosts. To compare different rates of incoming packets, we
controlled the rate of normal and attack traffic to increase and
decrease the intensity of DDoS on the controller. Equation 1 is
used for showing the rate R of incoming attack packets to
normal traffic attacks. Where Pa and Pn are the number of
attack packets and normal traffic packets respectively.

Rzgx 100% oo (1)

m
Table 2 shows the threshold and compares it to normal traffic
values. The threshold is set to 1.31. To get this value the
following was done:

Table .2. Threshold Value Calculation

Normal Traffic 25% Rate

Attack
Mean 1.47 1.3
Standard Deviation | 0.009 0.012
Confidence + 0.0035 +0.0047
interval
Confidence 1.4735 1.3047
interval Max
Confidence 1.4665 1.2953
interval Min
Difference of | 0.1618
Normal traffic min
and Attack traffic
Max.
Threshold 1.31

When the network is running live, these values can be
modified and this is one of the advantages of central control in
SDN.

International Journal of Engineering Science and Computing, June 2017

5.2 Results

The experiment covers four cases of normal and an attack
traffic run. Normal traffic is run on all switches with randomly
generated packets going to all hosts. Attack traffic is run from
two hosts. Attacks were run manually (i.e. a script was run
after one third of the length of our simulation). In Mininet, IP
addresses for all hosts are assigned incrementally from
10.0.0.1 onward. For one host attack, we randomly chose a
host in a switch to send attack packets to another host while all
other hosts and switches are running normal traffic. Table 3
shows the attack traffic profile. All the traffic packets will be
UDP, destination port is 80 and type of attack is DDoS. In
Openflow, by default, only the packet header is sent to the
controller so no payload was added to the generated packets.

Table .3. Attack Traffic Profile

Protocol Port Payload Types of
Attack
UDP 80 None DDoS

DDoS attacks reach a much higher intensity. Attacks, often,

they generate a traffic that is few times higher than the normal

traffic. In order to show that the system functions as intended,

we’ve considered different scenarios. The scenarios we’ve

produced the results by simulating the system are as follows.

o Under normal traffic flow

e During an attack on a host

e As the entropy Changes between the Normal and Attack
traffic

o After early detection and prevention work is done

5.2.1 Normal Traffic Packet Generation

In the normal traffic flow there is nothing the controller is
expected to do except calculating the entropy value to
determine whether the incoming packets are of attack types or
normal. As it is depicted in the figure below the entropy value
is stable and there is no sudden change that would make the
controller to suspect the existence of an attack and therefore
controller takes no action.

@& wireshark 10 Graphs: h1-etho

r20

‘\\\‘||||\\\‘\\\|||||\\\‘\‘\|0
0s 205 405 60s 80s 100s 1208 140s

Figure.4. Normal Traffic Change that is generated from
host 1

5.2.2 Attack on the host

In a condition where there is an attack detected in the network
the entropy value does not stay as stable as normal
environment. In fact, the entropy value goes down below the
threshold value which in this case is equal to 1. In this
scenario we have generated the attack traffic from two hosts
making one of the other hosts a target. And as the figure 5
clearly shows, the sudden change in the packet flow occurs as
expected. This implies the increase of the number packets

13427 http://ijesc.org/

which in its turn results in the dropping down of the entropy
value.

@& () wireshark 10 Graphs: h24-etho

100

50

\|\|\‘|\\|\|\‘|\|‘\|\|\\|‘\|0
205 40s 60s 80s 1005 1205 1405

Figure .5. DDoS Attack results of Host 24

5.2.3 Entropy Change between the Normal and Attack traffic
Figure 6 shows the difference between the results of the
normal traffic and the attack traffic entropy value changes. So,
as you can see from the figure when the normal traffic is
generated its entropy value will change and shows a reading of
an increasing value from the given threshold. Whereas, in the
case where the controller notices an attack traffic the entropy
value show a decrease and drops down below the threshold
value.

Normal and Attack Entropy Change

"
I

M —
12 — =
s 1
£ os
=
2 o6 ormal
S 0.2 —m— Attack
0.z .
o i = —— =
1 z 3 a s 5 7

Packet

Figure.6. Entropy Change with Normal traffic and DDoS
attack traffic

5.2.4 Detection and Prevention of DDoS Attack

The controller waits for a certain threshold value of packet
size before it takes any action on the environment it suspected
to have an attack. Therefore, the first 250 packets of attack
traffic pass by until the detection is confirmed. Then it’s after
this confirmation that the controller takes the measure to
prevent the attack from continuing to happen. Figure
demonstrates the change in packet size as the attack happens
and the point where the controller gets its defense on.

@& [wireshark 10 Graphs: h24-etho

r 100

A A
ST
I AN ‘
|
|

\

i 1
M, ‘\"\f W ,_JJ \ N
;J \ |

. _\\I (/
\ /

il
‘ VA
/‘“v”‘v’r\f\-\;*w \/J'\,h |‘ |
/

L/ L/ ‘
L

|||‘\‘\H‘\‘\|||'r0

405 60s 80s 100s 1208 1408 1605
Figure.7. Detection and Prevention of DDoS Attack

VI. CONCLUSION AND FUTURE WORK

6.1 Conclusion

The academia and the industry in the networking field has
come to the realization that the future of SDN relies on
distributed architectures, because centralized architectures do
not fulfill the needs of efficiency, scalability, and availability.
In this paper, we’ve tried to provide a comprehensive solution

International Journal of Engineering Science and Computing, June 2017

of SDN multi-controller architectures by explaining their
characteristics and presenting different scenarios of the
implementation. In this thesis work, the effort to implement a
multi-controller based SDN solution to detect a DDoS attack
on its early stage is accomplished successfully. The
environment is implemented using logically centralized pox
controller. This brings many solutions to the shortcomings of
the single controller based environment. The most important
of the contributions made by this research are reduction of a
single point failure, increased flexibility to enable the
scalability of the network and the capability of backup
functionality with redundancy. This research succeeded in
detecting DDoS attack early in a multi-controller structure.
The mitigation of the attack is analyzed and prevention
mechanism is developed to avoid the DDoS attack in its initial
stage before harming our network. The mechanism is
implemented using Mininet network emulator. The Proposed
method is based on the Entropy variation of destination IP
address and can detect the attack within the first 250 packets
of malicious traffic attacking a particular host in the SDN.

6.2 Future Work

Network researchers and designers will have to deal with
many problems that distributed architectures face to enhance a
multi-controller network, like developing an efficient
communication process, creating an adequate network design,
or integrating new applications into the northbound interface
that support multiple controllers. As it is stated above the
solution we’ve proposed used logically centralized controller.
In the future, it would be better to implement logically
distributed controllers in order to get the best out of multi-
controller structure giving it the ability to have both the
advantages of single and multiple controller based systems.
One of the main features in a multi-controller structure is that
the controllers have the responsibility of watching over the
whole environment and this obviously creates an additional
load that a controller in a single controller based environment
would not. Therefore, it would enhance the performance of
multi-controller based structures even more if a solution to
find a way to balance the load between controllers could be
achieved.

VIIl. REFERENCES

[1]. C. Douligeris and A. Mitrokotsa. (2004) "DDOS attacks
and defense mechanisms: classification and state-of-the-art,"”
Computer Networks 44,

[2].Jiafu Wan, Di li & Athanasios Vasilakos. (January 2016).
“Security in Software-Defined Networking threats and
Countermeasures”.

[3]. L. R. Prete, C. M. Schweitzer, A. A. Shinoda and R. L.
Santos de Oliveira. (2014) "Simulation in an SDN network
scenario using the POX Controller," IEEE.

[4]. Martin Vizv'ary. (January 2015). “Mitigation of DDoS
Attacks in Software Defined Networks”.

[5]. Maryam Kia. (2015). “Early Detection and Mitigation of
DDoS Attacks in Software Defined Networks”.

[6] .M. B. C. Dillon. (2014). "OpenFlow DDoS Mitigation,"
Amsterdam.

[7]. Nayana Y, Mr. Justin Gopinath and Girish. L. (June
2015). “DDoS Mitigation using Software Defined Network”.
International journal of Engineering trends and Technology.

13428 http://ijesc.org/

[8]. Nhu-Ngoc Dao, Junho Park, Minho Park, and Sungrae
Cho. (2013). “A Feasible Method to combat against DDoS
Attack in SDN Network™.

[9]. Open Networking Foundation. (September 2012).
"Openflow-spec-v1.3.0".

[10]. Open Networking Foundation. (April 2012). " Software-
Defined Networking: The New Norm for Networks".

[11]. Open Networking foundation. (2017). “https:// www.
opennetworking.org/sdn-resources/sdn-definition”. Retrieved
on March 2017.

[12]. Othmane Blial, Mouad Ben Mamoud Ben Mamoun, and
Redouane Benaini. (2016) “An Overview on SDN
Architectures with Multiple Controllers,” Journal of Computer
Networks and Communications.

[13]. Poojja & Manu Sood. (2015). “SDN and Mininet: Some
Basic Concepts”.

[14]. Sandeep Singh, R.A. Khan & Alka Agrawal. (2015).
“Prevention Mechanism for Infrastructure based Denial-of-
Service attack over Software Defined Network” International
Conference on Computing, Communication and Automation
(ICCCA).

[15]. Seyed Mohammad Mousavi & Marc St-Hilaire. (2015).
“Early Detection of DDoS Attacks against SDN Controllers”
International Conference on Computing, Networking and
Communications and Information Security Symposium.

[16]. Shishupal Kumar, Nidhi Lal & Vijay Kumar Chaurasiya.
(February 2016). “Performance analysis of Software Defined
Network with Multiple Controllers”.

[17]. Sukhveer Kaur, japinder Singh and Navtej Singh.
(December 2015). “Network Programmability Using POX
Controller”.

[18]. William Stallings. (March 2013). http://www.
cisco.com/c/ en/us/about/press/internet-protocol-journal/back-
issues/table-contents-59/161-sdn.html.

[19]. Wolfgang Braun and Michael Menth. (2014). “Software-
Defined Networking Using OpenFlow: Protocols,
Applications and Architectural Design Choices”.

[20]. Xenon Foukas, Mahesha k. Marina & Kimon
Kontovasilis. “Software Defined Networking concepts”.

International Journal of Engineering Science and Computing, June 2017

13429

http://ijesc.org/

