
International Journal of Engineering Science and Computing, June 2017 13422 http://ijesc.org/

ISSN 2321 3361 © 2017 IJESC

Early Detection of DDoS Attacks in a Multi-Controller Based SDN
Dr.T.Pandikumar

1
, Frew Atkilt

2
, Capt.Abdulkadir Hassen

3

Associate Professor
1
, M.Tech Student

2
, Lecturer

3

Department of Computer & IT

College of Engineering, Defence University, Debre Zeyit, Ethiopia

Abstract:

Networks used to depend on hardware devices which have the control and data plane in a single plane. This made networks

susceptible to failure because if the hardware fails the network stops. This is the reason software defined network structure has

come into existence. By separating the control plane from the data plane, software-defined networking offers several benefits for

networking. But that didn‟t mean software-defined networking solves every problem in the network. Areas like networks‟

scalability, reliability and availability remain as the issues yet to be addressed. The main concept behind SDN is the separation of

the network‟s control and forwarding planes with the control plane moved to the centralized controller, which provides an ideal

platform for distributed detection and mitigation of DDoS attacks. This research work takes advantage of this special ability of

SDN to propose a solution with an implementation running at the multi-controller to detect DDoS attack at the early stage. The

method not only can detect the attacks but also identify the attacking paths and start a mitigation process to provide protection for

the network devices the moment an attack is detected. The proposed method is based on the entropy variation of the destination

host targeted with its IP address and can detect the attack within the first 250 packets of malicious traffic attacking a particular

host in the SDN.

Keywords: DDoS attack, Entropy, Multi-controller, SDN

1. INTRODUCTION

Networking principles have remained mostly unchanged over

the past decade. Networks are built using more or less

sophisticated switches and routers. These devices are being

developed by tens of vendors usually using proprietary

operating system and interfaces. Building heterogeneous

networks on devices from different vendor‟s means that

organization has to employ a specialist on every router brand.

Configuration of different systems also increases the

probability of configuration mistakes. This issue coupled with

incompatibility of different versions of systems from one

vendor makes heterogeneous networks difficult or very

expensive to manage. There is a need for a new technology to

make networks more scalable, dynamic and to allow easier

management of network devices from different vendors. These

needs could be fulfilled by programmable networks, i.e., by

Software Defined Networking (SDN) (Martin Vizv´ary,

January 2015). SDN could replace traditional networking. It

is based on the abstraction of a control and a data plane. The

main idea is to produce less sophisticated data plane devices,

e. g., switches, which only forward the traffic according to a

set of rules defined by the software in the control plane. This

should remove the differences in proprietary interfaces of

devices and makes the network administration independent of

data plane devices vendors. SDN also enables applications and

network services to treat the network as one logical entity and

grants unified access to all devices through the SDN control

plane. This opens the upper layer of the network to software

that can manage how traffic in the network is forwarded. The

research in the field of SDN and general security in SDN is

still in its early phase. The SDN will not erase the DDoS

attacks from the Internet. Moreover, every new technology

and level of abstraction opens new attack vectors. However,

we believe that the attributes of SDN can help to detect and

mitigate the attacks.

Our research will be dedicated to analysis of security

challenges in SDN from the point of view of DDoS attacks

and development of a new DDoS attacks mitigation technique.

We believe that SDN gives us a new powerful tool against

DDoS attacks. The higher flexibility and easier management

of networks could be a powerful tool for detection and

mitigation of DDoS attacks. However, one should be aware of

upcoming security threats accompanied with the deployment

of SDN. The research focused on the security in SDN is still in

its early phase. This research focused on the security of the

data plane, security of the control plane, security of the

communication between these planes and on enhancing the

network security using SDN, which is also our goal. The result

of our research is going to be a novel method for mitigation of

DDoS attacks using the benefits of Software Defined

Networking, which enhance the network security.

Combination of the existing detection methods and

management of SDN forms a new way of DDoS mitigation in

future networks.

1.2 Statement of the Problem

SDN is a new networking approach that is introduced with the

goal to simplify the network management by separating the

data and control planes. SDN has brought with itself

programmability in the network control plane. The shift of the

control logic from networking devices, such as switches and

routers, in traditional networks to a centralized unit known as

the controller permits the physical network hardware to be

detached from the control Plane. This separation simplifies the

design of new protocols and implementation of new network

services such as access control, QOS, enforcement of new

policies, bandwidth management, traffic engineering and etc.

No longer does every small change need to come at the cost of

reconfiguring all the network devices. The SDN networks and

its controller can be seen as slice of the network. We are

focusing on each of these slices to protect it against DDoS. If

Research Article Volume 7 Issue No.6

International Journal of Engineering Science and Computing, June 2017 13423 http://ijesc.org/

the connection between the switches and the controller is lost,

the network will lose its processing plane. That means packet

processing is no longer done in the controller and by losing the

controller, the SDN architecture is lost. The aim of this

research is detecting a DDoS attack in its early stages. The

term early depends on the network itself. Since the controller

software can be run on a laptop or a powerful desktop, the

term early would depend on the tolerance of the device and

traffic properties. However, if the detection happens in the

first few hundred packets, the mitigation is applied before the

controller is completely swamped with the large number of

malicious packets. To accomplish this goal, a fast and

effective method is needed that works within the controller. At

the same time, it must be lightweight to avoid excessive

processing power usage, specially, at the peak of an attack.

1.3 Objective of the Study

1.3.1 General objective

The general objective of this research work is to Early Detect

DDoS attacks by using multi-controller Software Defined

Networks.

1.3.2 Specific objectives

 In order to achieve the aforementioned general objective the

following specific objectives need to be achieved:

 Detection of attack in a multi-controller SDN structure.

 To analyze mitigation of the attack.

 To develop a prevention mechanism to avoid DDoS attack in

its initial stage before harming our network.

 Implement the proposed mechanism using Mininet.

1.4 Scope of the Study

 Find a solution to detect DDoS in SDN before it overwhelms

the controller.

 Proposed a lightweight and fast DDoS detection mechanism

based on entropy, to protect the controller.

 To Show the effectiveness of the solution through extensive

simulations.

1.5 Limitation of the project

The Proposed Policy will be implemented in simulator. The

Attack is only concentrating on traffic attack sending a huge

volume of TCP, UDP and ICMP packets to the target.

1.6 Significance of the study

In order for SDN to deliver on its full promise, it must be

enabled by open networking standards that can be easily

integrated with current infrastructures. Adopting an SDN

methodology has a myriad of benefits including flexibility,

scalability, redundancy, and performance. In a traditional

network, there might be certain limited hardware and software

pieces. When a network requires additional resources, there

will be considerable cost in buying new hardware and

licensing. With SDN, the network is abstracted onto software,

leaving more choice and flexibility in purchasing hardware. In

addition, a growing network can be more easily supported by

SDN because a network administrator or engineer can simply

add more virtual switches or routers rather than purchase

costly equipment and licensing.

II. SDN AND OPEN FLOW ARCHITECTURE

2.1 Introduction

This chapter provides discussion on fundamental concepts of

the study. This chapter is organized into four main sections.

The main important points of the chapter consists an in depth

study of the Software Defined Networks, SDN Controller,

Open Flow Protocol and DDoS Attacks.

2.2 Software Defined Networks

Software-defined networking (SDN) is an approach to

computer networking that allows network administrators to

manage network services through abstraction of lower-level

functionality. SDN is meant to address the fact that the static

architecture of traditional networks doesn't support the

dynamic, scalable computing and storage needs of more

modern computing environments such as data centers. This is

done by decoupling or disassociating the system that makes

decisions about where traffic is sent (the control plane) from

the underlying systems that forward traffic to the selected

destination (the data plane).

Figure.1. Software Defined Networking (SDN) Framew
Software-defined networking (SDN) is an architecture

purporting to be dynamic, manageable, cost-effective, and

adaptable, seeking to be suitable for the high-bandwidth,

dynamic nature of today's applications. SDN architectures

decouple network control and forwarding functions, enabling

network control to become directly programmable and the

underlying infrastructure to be abstracted from applications

and network services (Open Networking foundation, 2017).

Software-defined networking (SDN) has gained a lot of

attention in recent years, because it addresses the lack of

programmability in existing networking architectures and

enables easier and faster network innovation. SDN clearly

separates the data plane from the control plane and facilitates

software implementations of complex networking applications

on top. There is the hope for less specific and cheaper

hardware that can be controlled by software applications

through standardized interfaces. Additionally, there is the

expectation for more flexibility by dynamically adding new

features to the network in the form of networking applications.

This concept is known from mobile phone operating systems,

such as Apple‟s iOS and Google‟s Android, where “apps” can

dynamically be added to the system (Wolfgang and Michael,

2014).

The SDN architecture is:

 Directly programmable: Network control is directly

programmable because it is decoupled from forwarding

functions.

International Journal of Engineering Science and Computing, June 2017 13424 http://ijesc.org/

 Agile: Abstracting control from forwarding lets

administrators dynamically adjust network-wide traffic

flow to meet changing needs.

 Centrally managed: Network intelligence is (logically)

centralized in software-based SDN controllers that

maintain a global view of the network, which appears to

applications and policy engines as a single, logical switch.

 Programmatically configured: SDN lets network managers

configure, manage, secure, and optimize network resources

very quickly via dynamic, automated SDN programs,

which they can write themselves because the programs do

not depend on proprietary software.

2.2.1 SDN Architecture

SDN architecture contains six major components. First is the

management plane, which is a set of network applications that

manage the control logic of a software-defined network.

Rather than using a command line interface, SDN-enabled

networks use programmability to give flexibility and easiness

to the task of implementing new applications and services,

such as routing, load balancing, policy enforcement, or a

custom application from a service provider. It also allows

orchestration and automation of the network via existing APIs.

Second is the control plane that is the most intelligent and

important layer of an SDN architecture. It contains one or

various controllers that forward the different types of rules and

policies to the infrastructure layer through the southbound

interface.

Third, the data plane, also known as the infrastructure layer,

represents the forwarding devices on the network (routers,

switches, load balancers, etc.). It uses the southbound APIs to

interact with the control plane by receiving the forwarding

rules and policies to apply them to the corresponding devices.

Fourth, the northbound interfaces that permit communication

between the control layer and the management layer are

mainly a set of open source application programming

interfaces (APIs). Fifth, the east-west interfaces, which are not

yet standardized, allow communication between the multiple

controllers.

They use a system of notification and messaging or a

distributed routing protocol like BGP and OSPF. Sixth, the

southbound interfaces allow interaction between the control

plane and the data plane, which can be defined summarily as

protocols that permit the controller to push policies to the

forwarding plane. The OpenFlow protocol is the most widely

accepted and implemented southbound API for SDN-enabled

networks (Othmane, Mouad, and Redouane, 2016).

2.2.2 SDN Controllers

One of the core ideas of the SDN philosophy is the existence

of a network operating system placed between the network

infrastructure and the application layer. This network

operating system is responsible for coordinating and managing

the resources of the whole network and for revealing an

abstract unified view of all components to the applications

executed on top of it. This idea is analogous to the one

followed in a typical computer system, where the operating

system lies between the hardware and the user space and is

responsible for managing the hardware resources and

providing common services for user programs. Similarly,

network administrators and developers are now presented with

a homogeneous environment easier to program and configure

much like a typical computer program developer would.

III. LITERATURE SURVEY

3.1 Introduction

DDoS Attack have recently recognized as one of the most

threats to the SDN based networks. Many researches have

been conducted to analyze and detect DDoS Attack and the

results of these researches contributed to security enhancement

and draw new idea on strengthening the detection of DDoS

Attack in SDN based networks. In this chapter, previous

research works which are directly or indirectly related to this

study are reviewed. The area of focus and limitations of these

works are also discussed.

3.2 Reviewed Literature

One of the works published on the subject matter of Detection

of DDoS Attacks in SDN Controller is a paper titled as “Early

Detection of DDoS Attacks in Software Defined Networks

Controller” by Seyed Mohammad (2015). In his solution,

randomness of the incoming packets is measured. A good

measure of randomness is entropy. Entropy measures the

probability of an event happening with respect to the total

number of events. For instance, in a network of 64 hosts, all

hosts should have a reasonably close probability of receiving

new incoming packets. This will results in, reasonably, high

entropy. New packet, in the sense that there is no flow for it in

the switch table and it has to be sent to the controller to be

validated for a new flow. If one or a number of hosts starts to

receive excessive incoming packets, the randomness decreases

and entropy drops. This research makes use of this property of

entropy to detect an attack at its early stages. Based on the

tests that are done in this research, we choose a threshold for

entropy and lower values will be considered as attacks. Being

programmable is one of the major advantages of SDN. Any

time the network configuration changes, the threshold can be

adjusted. And, it can be adjusted while the network is running

live traffic so there is no restriction. Depending on the

network, the entropy can be of the destination IP address,

VLAN tag, destination port or any other applicable field. If it

is lower than the set threshold, it will be considered an attack.

The need of Entropy

When packets arrive at the controller, the source address is

always new. This is the reason they come to the controller.

There has not been an instance of them in the table of the

switch so they are passed on to the controller. For every new

incoming connection, the controller will install a flow in the

switch so that the rest of the incoming packets will be directed

to the destination without further processing. The other known

fact about the new packets coming to the controller is that the

destination host is in the network of the controller. The

network consists of the switches and hosts that are connected

to it. Knowing the packet is new and the destination is in the

network, the level of randomness can be quantified by

calculating the entropy based on a window size. The window

size is the number of incoming new packets that are used for

calculating entropy. In this case, maximum entropy occurs

when each packet is destined to exactly one host. Minimum

entropy occurs when all the packets in a window are destined

for a single host. The paper also discusses the possibility of

losing the controller and identifies the need for a backup one.

The paper proposes a second controller that runs in parallel to

the current running controller. If the switches lose connection

to the controller, they will look for the second controller,

International Journal of Engineering Science and Computing, June 2017 13425 http://ijesc.org/

which is added to the configuration of the switch. One of the

mentioned scenarios is losing the controller in a DDoS attack.

Figure 2 shows running two controllers in parallel. The first

controller will continuously send status updates to the backup

controller announcing that it is alive. If the first controller goes

to an unknown state or becomes unreachable, the second

controller will take control and starts running the network

normally.

Figure .2. Two controllers for resiliency in Open flow

The Paper by Sandeep Singh, R.A. Khan and Alka Agrawal

(2015) developed four steps strategy to avoid the attack from

being happen. According to the first step by increasing the

available queue size for incoming packets and simply direct

them to wait until the queue becomes empty. This will give

some relaxation to the traffic handling. After applying this

step if still the traffic is continuously increasing and the

buffering policy came in to failure mode then it shall go for

the second step. Setting Timer/ Time stamping: when

buffering does not work they use timer for a particular source

of IP address. The IP of generated traffic can be easily

identified and marked for time stamping. This time stamping

policy is simply like debar a particular source of IP for some

specified time limit. By setting a timer in the Visual Network

Description (VND) scenario they can block a particular IP for

some time interval. In this way other users can smoothly

communicate with servers of SDN network and a specified IP

will be put on hold for some time. After specified time limit

has reached controller automatically allow all sources to

transfer data. In this way if the problem resolved then we have

nothing to worry if still a heavy traffic is coming it

reconfirming about something is wrong there in network. In

this situation it shall go for the third step of mechanism.

Warning cum request packets: when none of the policy is

working it replicates about the confirmation of attack. In third

step it shall generate an Eco request packet to the specified

source of IP to slow down the transfer rate of sending traffic.

This warning message will be applied thrice for slowing down

the rate of packet transfer. If at this stage the particular source

of IP did not slow down the rate of sending traffic it is

identified that a particular source of IP is an attacking point

and some strict action must be taken against it. In the fourth

step after applying the above policies to make sure about an

attack is happening it simply trace back the source and block

this IP by sending a command to the controller. After applying

the mechanism developed for prevention of Infrastructure

based DoS attack the link congestion is avoided at its early

stage and servers are also secured by getting into deadlock.

The Paper by Nayana Y, Mr.JustinGopinath and Girish.L

(June 2015) tried to mitigate DDoS attack with SDN

Controller. The SDN controller detects the DDoS attack by

using threshold value and helps to remove DDoS attack in the

network. In their project they are providing security challenges

in DDoS attacks mitigation in SDN environment. The paper

uses for mitigation the output of developed DDoS detection

method. Selecting threshold value is necessary to help the

DDoS detection to make a good decision in identifying the

attacker at the fast attack especially. This value is helpful for

differentiating normal activity and abnormal activity in

network traffic. If we select inaccurate threshold value will

cause an excessive false alarm especially if the value is too

high or too low. Detecting the intrusion as quickly as possible

is very important to provide the security. The paper sets

threshold value, if the traffic i.e., number of packets crosses

the threshold value the controller will take action and mitigate

the attack immediately. Random policy used for balancing the

load. Balances the traffic to backend servers depend on the

source address and source port on every incoming packet.

IV. METHODOLOGY AND MATERIALS

In this chapter, we will describe how our work is organized.

We will give a detailed description of the materials and

methods used to get our results. This section gives you the

experimental setup of our study and the tools that we used.

41 Methods

4.1.1 Entropy Variation of Destination IP address

Entropy is a measure of uncertainty or randomness associated

with a random variable which in this case is the destination

address. A higher randomness will result in higher entropy.

The entropy value lies in the range of [0, log2𝑚] where 𝑚 is

the number of destination IP addresses. The entropy value is at

its minimum when all the traffic is heading to the same

destination. On the other hand the entropy value is at its

maximum when the traffic is equally distributed to all the

possible destinations (Maryam kia, 2015). In the normal

network state we expect that the traffic spreads out to many

different hosts. During a DDoS attack the number of packets

destined for a specific host or a small set of hosts rises

suddenly and the entropy decreases. A decrease in the entropy

is an alarm for the network to watch out for a possible attack.

It is vital in SDN networks to have a fast detection method and

to detect the attacks at its early stages. SDN networks are more

vulnerable against the DDoS attacks than the traditional

networks. If the detection time takes too long the attacker

could break the switches or the controller and so an early

detection is extremely important. For an early detection the

window should not be too large. On the other hand a small

window will add to the computational overhead. As proposed

by Maryam Kia in this thesis we will use the window size of

fifty to balance the two concerns. A module is added to the

pox controller for the entropy calculations. For every fifty

packets that arrive in the controller the relative frequencies are

calculated. The calculated entropy is compared against the

threshold value. If the calculated entropy is less than the

threshold for five consecutive entropy calculations an attack is

suspected and further analysis will be performed to determine

if the attack is real.

4.1.2 Attack Mitigation

If a switch is reported as being under attack the algorithm

should try to mitigate the attack. A number of possible attack

mitigation approaches include installing flows in the attack

paths to drop packets until the attack is stopped or blocking

the incoming ports where the attack traffic is arriving at.

International Journal of Engineering Science and Computing, June 2017 13426 http://ijesc.org/

Although all these methods will mitigate the attack and will

buy time for the network operators to find the attack sources

before the break down of the controller or switches the

adoptions of these methods will also affect the legitimate

traffic as much as the attack traffic and the network services

will become unavailable or respond slowly to legitimate

traffic. The controller is usually designed with high capacities

and therefore it will not crash very easily. The switches on the

other hand have limited resources and are not very robust

against attacks. When an attack is underway the flow table on

the switches will be filled with a large number of short flows

that will eventually break the switch. In the proposed

mitigation algorithm the flow idle timer will be changed from

the default value to the mitigated value to prevent the

breakdown of the switches. The mitigated value is smaller

than the default value; consequently, the short malicious flows

will time out quickly and are deleted from the switch flow

tables. The legitimate traffic flows on the other hand are

expected to have a longer connection with a larger number of

packets. If the mitigated value is chosen correctly it will not

affect the legitimate flow entries significantly but will clear

out the malicious flows quickly.

4.2 Materials

4.2.1 Pox Controller

There are few famous controllers available. The one that will

be used in this experiment is POX. Pox is widely used for

experiments; it is fast, lightweight and designed as a platform

so a custom controller can be built on top of it. It is an

improved version of its predecessor NOX, and both are

running on Python. POX works on Linux, Mac OS and

windows, and it has topology discovery. For completeness,

three other controllers should be mentioned. Floodlight is

another widely used controller that is open-source and written

in Java. One advantage of Floodlight is facilitating application

interface to the controller so they can run alongside it. Beacon

is another Java-based controller that is open-source and has

high throughput and low latency. Open Daylight controller is

the most recent addition to Openflow controllers. It meant to

be a common platform for all SDN users.

Table .1. Comparison of different SDN Controllers

 POX RYU Floodlight Open

Day

Light

Language Python Python Java Java

OpenFlow

Support

v1.0 v1.0

,1.2,

1.3

v1.0 v1.0

OpenSource Yes Yes Yes Yes

GUI Yes Yes Yes Yes

REST API No Yes Web GUI Yes

Platform

Support

Linux

Mac

Windows

Linux Linux Linux

Mac

Windows

POX is an open source development platform for Python-

based software-defined networking (SDN) control

applications, such as OpenFlow SDN controllers. POX, which

enables rapid development and prototyping, is becoming more

commonly used than NOX, a sister project.

4.2.2 Pox Configuration

The way POX initiate components, is to use the component

name as the argument. To use a pre-built L2 learning switch

component, we can use „forwarding.l2_learning‟ as the first

argument.

A POX controller consists of three parts:

 Listener

 Control logic

 Messenger

4.2.3 Mininet

Mininet is the network emulator that will be used for this

experiment. It is the standard network emulation tool that can

be used for SDN. Mininet can prototype a network on a laptop

or PC by using kernel namespace feature. Network namespace

provides individual processes with their own network

interfaces, ARP tables and routing tables. Mininet makes use

of this feature of the kernel. It uses process-based

virtualization to run switches and hosts on the kernel. Large

networks with different topologies can be emulated and tested.

Mininet is a network emulator which creates a network of

virtual hosts, switches, controllers, and links. Mininet hosts

run standard Linux network software, and its switches support

OpenFlow for highly flexible custom routing and Software-

Defined Networking.

4.2.4 Scapy

Packet generation is done by Scapy. It is a very powerful tool

for packet generating, scanning, sniffing, attacking and packet

forging. Scapy is used here to generate UDP packets and spoof

the source IP address of the packets. The code for generating

random source IP addresses and host IP addresses is in

Python. The function “randrange” is used which is inheriting

the function “random”. This function produces a uniform

random float in the range [0.0, 1.0). This number shows a long

period of random number generation which will result in

generating random numbers with uniform distribution. These

numbers are joined together to form spoofed source IP

addresses. Two other parameters that we set in Scapy are: type

of packets and interval of packet generation. UDP packets are

used for both attack and normal traffic. The interval was set to

suit the test case. For instance, for an attack with 25% rate,

normal traffic interval is 0.1 seconds and attack traffic is

0.025. This gave us windows with 25% of packets destined to

one host.

V. SIMULATION RESULTS AND ANALYSIS

5.1 Simulation Scenarios

The simulation and testing of the proposed method for DDoS

attack detection is explained through the following sections.

The algorithm is implemented on the python based pox

controller in the Mininet virtualized network environment.

Scapy scripts are used to generate the legitimate and attack

traffics on the network hosts during the simulation.

5.1.1 Network Setup

The simulation is done on a Toshiba laptop with a dual core

processor, 1.7 GHz of power, 2GB of ram, and

10/100/100/1000Mbitps network interface. The operating

system is Linux Ubuntu 14.04 and Mininet version 2.0.0 was

International Journal of Engineering Science and Computing, June 2017 13427 http://ijesc.org/

run native on Linux. Mininet 2.0.0 supports Open flow version

1.0. Using Mininet, a tree-type network of depth one with 3

controllers, 3 switches and 32 hosts was created. Figure 8

shows the network. OpenFlow is used for the network

switches.

Figure.3. Experiment Network with 5 switches and 32

hosts

5.1.2 Choosing Threshold Value

We use the same threshold value that is suggested from the

base paper. The detection mechanism in our solution dictates

that if the entropy is lower than the threshold, and it persists

for five windows in a row, an attack is in progress. The

experiments cover an attack to one host and a subnet of four

hosts. To compare different rates of incoming packets, we

controlled the rate of normal and attack traffic to increase and

decrease the intensity of DDoS on the controller. Equation 1 is

used for showing the rate R of incoming attack packets to

normal traffic attacks. Where Pa and Pn are the number of

attack packets and normal traffic packets respectively.

= x 100% ……………………………………… (1)

Table 2 shows the threshold and compares it to normal traffic

values. The threshold is set to 1.31. To get this value the

following was done:

Table .2. Threshold Value Calculation

 Normal Traffic 25% Rate

Attack

Mean 1.47 1.3

Standard Deviation 0.009 0.012

Confidence

interval

+ 0.0035 + 0.0047

Confidence

interval Max

1.4735 1.3047

Confidence

interval Min

1.4665 1.2953

Difference of

Normal traffic min

and Attack traffic

Max.

0.1618

Threshold 1.31

When the network is running live, these values can be

modified and this is one of the advantages of central control in

SDN.

5.2 Results

The experiment covers four cases of normal and an attack

traffic run. Normal traffic is run on all switches with randomly

generated packets going to all hosts. Attack traffic is run from

two hosts. Attacks were run manually (i.e. a script was run

after one third of the length of our simulation). In Mininet, IP

addresses for all hosts are assigned incrementally from

10.0.0.1 onward. For one host attack, we randomly chose a

host in a switch to send attack packets to another host while all

other hosts and switches are running normal traffic. Table 3

shows the attack traffic profile. All the traffic packets will be

UDP, destination port is 80 and type of attack is DDoS. In

Openflow, by default, only the packet header is sent to the

controller so no payload was added to the generated packets.

Table .3. Attack Traffic Profile

Protocol Port Payload Types of

Attack

UDP 80 None DDoS

DDoS attacks reach a much higher intensity. Attacks, often,

they generate a traffic that is few times higher than the normal

traffic. In order to show that the system functions as intended,

we‟ve considered different scenarios. The scenarios we‟ve

produced the results by simulating the system are as follows.

 Under normal traffic flow

 During an attack on a host

 As the entropy Changes between the Normal and Attack

traffic

 After early detection and prevention work is done

5.2.1 Normal Traffic Packet Generation

In the normal traffic flow there is nothing the controller is

expected to do except calculating the entropy value to

determine whether the incoming packets are of attack types or

normal. As it is depicted in the figure below the entropy value

is stable and there is no sudden change that would make the

controller to suspect the existence of an attack and therefore

controller takes no action.

Figure.4. Normal Traffic Change that is generated from

host 1

5.2.2 Attack on the host
In a condition where there is an attack detected in the network

the entropy value does not stay as stable as normal

environment. In fact, the entropy value goes down below the

threshold value which in this case is equal to 1. In this

scenario we have generated the attack traffic from two hosts

making one of the other hosts a target. And as the figure 5

clearly shows, the sudden change in the packet flow occurs as

expected. This implies the increase of the number packets

International Journal of Engineering Science and Computing, June 2017 13428 http://ijesc.org/

which in its turn results in the dropping down of the entropy

value.

Figure .5. DDoS Attack results of Host 24

5.2.3 Entropy Change between the Normal and Attack traffic

Figure 6 shows the difference between the results of the

normal traffic and the attack traffic entropy value changes. So,

as you can see from the figure when the normal traffic is

generated its entropy value will change and shows a reading of

an increasing value from the given threshold. Whereas, in the

case where the controller notices an attack traffic the entropy

value show a decrease and drops down below the threshold

value.

Figure.6. Entropy Change with Normal traffic and DDoS

attack traffic

5.2.4 Detection and Prevention of DDoS Attack

The controller waits for a certain threshold value of packet

size before it takes any action on the environment it suspected

to have an attack. Therefore, the first 250 packets of attack

traffic pass by until the detection is confirmed. Then it‟s after

this confirmation that the controller takes the measure to

prevent the attack from continuing to happen. Figure

demonstrates the change in packet size as the attack happens

and the point where the controller gets its defense on.

Figure.7. Detection and Prevention of DDoS Attack

VI. CONCLUSION AND FUTURE WORK

6.1 Conclusion

The academia and the industry in the networking field has

come to the realization that the future of SDN relies on

distributed architectures, because centralized architectures do

not fulfill the needs of efficiency, scalability, and availability.

In this paper, we‟ve tried to provide a comprehensive solution

of SDN multi-controller architectures by explaining their

characteristics and presenting different scenarios of the

implementation. In this thesis work, the effort to implement a

multi-controller based SDN solution to detect a DDoS attack

on its early stage is accomplished successfully. The

environment is implemented using logically centralized pox

controller. This brings many solutions to the shortcomings of

the single controller based environment. The most important

of the contributions made by this research are reduction of a

single point failure, increased flexibility to enable the

scalability of the network and the capability of backup

functionality with redundancy. This research succeeded in

detecting DDoS attack early in a multi-controller structure.

The mitigation of the attack is analyzed and prevention

mechanism is developed to avoid the DDoS attack in its initial

stage before harming our network. The mechanism is

implemented using Mininet network emulator. The Proposed

method is based on the Entropy variation of destination IP

address and can detect the attack within the first 250 packets

of malicious traffic attacking a particular host in the SDN.

6.2 Future Work

Network researchers and designers will have to deal with

many problems that distributed architectures face to enhance a

multi-controller network, like developing an efficient

communication process, creating an adequate network design,

or integrating new applications into the northbound interface

that support multiple controllers. As it is stated above the

solution we‟ve proposed used logically centralized controller.

In the future, it would be better to implement logically

distributed controllers in order to get the best out of multi-

controller structure giving it the ability to have both the

advantages of single and multiple controller based systems.

One of the main features in a multi-controller structure is that

the controllers have the responsibility of watching over the

whole environment and this obviously creates an additional

load that a controller in a single controller based environment

would not. Therefore, it would enhance the performance of

multi-controller based structures even more if a solution to

find a way to balance the load between controllers could be

achieved.

VIII. REFERENCES

[1]. C. Douligeris and A. Mitrokotsa. (2004) "DDOS attacks

and defense mechanisms: classification and state-of-the-art,"

Computer Networks 44.

[2].Jiafu Wan, Di li & Athanasios Vasilakos. (January 2016).

“Security in Software-Defined Networking threats and

Countermeasures”.

[3]. L. R. Prete, C. M. Schweitzer, A. A. Shinoda and R. L.

Santos de Oliveira. (2014) "Simulation in an SDN network

scenario using the POX Controller," IEEE.

[4]. Martin Vizv´ary. (January 2015). “Mitigation of DDoS

Attacks in Software Defined Networks”.

[5]. Maryam Kia. (2015). “Early Detection and Mitigation of

DDoS Attacks in Software Defined Networks”.

[6] .M. B. C. Dillon. (2014). "OpenFlow DDoS Mitigation,"

Amsterdam.

[7]. Nayana Y, Mr. Justin Gopinath and Girish. L. (June

2015). “DDoS Mitigation using Software Defined Network”.

International journal of Engineering trends and Technology.

International Journal of Engineering Science and Computing, June 2017 13429 http://ijesc.org/

[8]. Nhu-Ngoc Dao, Junho Park, Minho Park, and Sungrae

Cho. (2013). “A Feasible Method to combat against DDoS

Attack in SDN Network”.

[9]. Open Networking Foundation. (September 2012).

"Openflow-spec-v1.3.0".

[10]. Open Networking Foundation. (April 2012). " Software-

Defined Networking: The New Norm for Networks".

[11]. Open Networking foundation. (2017). “https:// www.

opennetworking.org/sdn-resources/sdn-definition”. Retrieved

on March 2017.

[12]. Othmane Blial, Mouad Ben Mamoud Ben Mamoun, and

Redouane Benaini. (2016) “An Overview on SDN

Architectures with Multiple Controllers,” Journal of Computer

Networks and Communications.

[13]. Poojja & Manu Sood. (2015). “SDN and Mininet: Some

Basic Concepts”.

[14]. Sandeep Singh, R.A. Khan & Alka Agrawal. (2015).

“Prevention Mechanism for Infrastructure based Denial-of-

Service attack over Software Defined Network” International

Conference on Computing, Communication and Automation

(ICCCA).

[15]. Seyed Mohammad Mousavi & Marc St-Hilaire. (2015).

“Early Detection of DDoS Attacks against SDN Controllers”

International Conference on Computing, Networking and

Communications and Information Security Symposium.

[16]. Shishupal Kumar, Nidhi Lal & Vijay Kumar Chaurasiya.

(February 2016). “Performance analysis of Software Defined

Network with Multiple Controllers”.

[17]. Sukhveer Kaur, japinder Singh and Navtej Singh.

(December 2015). “Network Programmability Using POX

Controller”.

[18]. William Stallings. (March 2013). http://www.

cisco.com/c/ en/us/about/press/internet-protocol-journal/back-

issues/table-contents-59/161-sdn.html.

[19]. Wolfgang Braun and Michael Menth. (2014). “Software-

Defined Networking Using OpenFlow: Protocols,

Applications and Architectural Design Choices”.

[20]. Xenon Foukas, Mahesha k. Marina & Kimon

Kontovasilis. “Software Defined Networking concepts”.

